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Fig. 1. Given the input cartoon animation on the left, our approach decompose it into several sprites. These sprites can be composed to reconstruct the input
animation. The sprites may have multiple frames; see also the video for all frames of these sprites. ©Sandwich Town, used with artist permission.

We present an approach to decompose cartoon animation videos into a set
of “sprites” — the basic units of digital cartoons that depict the contents
and transforms of each animated object. The sprites in real-world cartoons
are unique: artists may draw arbitrary sprite animations for expressiveness,
where the animated content is often complicated, irregular, and challenging;
alternatively, artists may also reduce their workload by tweening and adjust-
ing sprites, or even reuse static sprites, in which case the transformations
are relatively regular and simple. Based on these observations, we propose a
sprite decomposition framework using Pixel Multilayer Perceptrons (Pixel
MLPs) where the estimation of each sprite is conditioned on and guided by
all other sprites. In this way, once those relatively regular and simple sprites
are resolved, the decomposition of the remaining “challenging” sprites can
simplified and eased with the guidance of other sprites. We call this method
“sprite-from-sprite” cartoon decomposition. We study ablative architectures
of our framework, and the user study demonstrates that our results are the
most preferred ones in 19/20 cases.

1 INTRODUCTION

In the era of digital content creation, the production of cartoon ani-
mation has moved from paper work to computer software. Computer-
aided workflows allow artists to manage their created contents in
an advanced way, and the basic unit of animation management is
typically called "sprite". Each sprite contains a transparent anima-
tion clip, and supports transformations such as panning, rotating,
scaling, etc. The assistance of animated sprites enhances the reusabil-
ity of drawing contents and reduces the workload of artists. Many
cartoon animation techniques are based on sprites, e.g., sprite tween-
ing, sprite filtering, etc. How to decompose a video production of
cartoon animation into editable and reusable source sprites is a
long-standing and highly demanded problem.

In real-world cartoon animation, sprites are unique in appear-
ance. In some cases, artists can draw arbitrary sprite animations to
enhance the visual expression. These animations are often highly
complicated, do not follow real physical principles, and sometimes
even omit or alter parts of the subject to emphasize the dynamics

of characters. For example, in the boy (fig. 2) sprite, the boy’s body,
hair, and hands have no fixed shape, making precise pixel correla-
tions difficult to establish. The artist’s exaggerated animation, which
is almost irregular, brings out the boy’s lively demeanor. In other
cases, on the contrary, the artist may reuse sprites and use software
to automatically compute intermediate animations or even directly
copy static sprites to save workload and cost. These computed an-
imations are usually simple and regular, and the motion of these
sprites can be analyzed and tracked relatively well. For example,
the fish and bubble (fig. 2) animations are obtained by moving the
respective sprites, while the sea (fig. 2) sprite is a static background.
For these relatively simple sprite animations, computational models
can routinely fit accurate and reliable motion patterns.

Observing the uniqueness of these sprites, we naturally come
up with a question: can we use some relatively simple sprites to help
decompose those more “challenging” sprites? Since the composition of
all sprites as a whole must reconstruct a complete cartoon animation
frame, if some of the sprites are resolved, then the decomposition
problem of the remaining sprites will be simplified. As shown in
figure 3, despite the complexity of the boy animation, if we can
guide the boy decomposition with other simple and regular sprites
like the fish, bubble, and sea, the exact content of our wanted sprite
can be obtained by solving a permutation/combination problem.

To this end, we propose an animation decomposition framework
that can automatically discover some sprites with relatively simple
and regular animation patterns, and at the same time, can decom-
pose other complicated sprites by learning a “sprite-from-sprite”
mapping, where the decomposition of those relatively challenging
sprites can be guided by the other sprites. We would like to point
out that our framework treats all sprites equally and optimizes them
together as a whole, avoiding hard threshold or explicit categoriza-
tion of sprites as challenging or simple. The core mapping is learned
using a Pixel Multilayer Perceptron (Pixel MLP, or called Implicit
MLP), which is a reliable component and has shown success in fields
like 3D representation (NeRF, [Mildenhall et al. 2020]).
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Fig. 2. Real-world example of cartoon animation: We show how car-
toon sprites are composed for animation, and the difference in complexity
between these sprites. In the timeline below, the black dot indicates an
editing keyframe; the purple blocks and arrows indicate the intermediate
animations that are automatically computed by the software. ©Boy in The
Sea, used with artist permission.

Experimental results demonstrate that a “sprite-from-sprite” de-
composition leads to sharp and clean results, as the coverage area
of each sprite is optimized with the guidance of other sprites. Fur-
thermore, compared to mainstream cartoon animation processing
methods based on detecting cartoon edge lines or color blocks, our
framework shows robustness to in-the-wild cartoon animations
since the optimization is performed on a per-pixel learning basis.
We also present various practical applications using our decom-
posed sprites. Finally, the user study show that our results are the
most preferred ones in 19/20 cases.

In summary, (1) we observe the real sprites of in-the-wild car-
toon animations and point out their uniqueness: artists can draw
sprites with arbitrary and complicated animation for visual expres-
sion, or use software to automatically compute and tween relatively
simple animations; (2) Based on these observations we propose a
“sprite-from-sprite” framework to decompose cartoon animations
into sprites, where the estimation of each sprite is guided by all
other sprites, e.g., the extraction of some complicated sprites can
be guided by other relatively simple sprites; (3) we demonstrate a
variety of cartoon animation applications using our decomposed
sprites; (4) the user study validate that, in 19/20 tests, our framework
is the most preferred one.

2 RELATED WORK

The decomposition of cartoon animation is different from typical
video decomposition tasks. The appearance of cartoon animation

=1
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Fig. 3. Sprite-from-sprite estimation: We show that the extraction of
one sprite can be guided by other sprites so that the decomposition of
some “challenging” sprites can be eased. ©Boy in The Sea, used with artist
permission.

poses unique challenges to the decomposition methods, such as
abrupt transitions and exaggerations for artistic effect. These special
variations will often require methods that rely relatively less on
assumptions like the presence of pixel correspondences, invariant
illuminations, etc.

Cartoon animation decomposition. The decomposition of car-
toon animation is a long-standing problem. Traditional methods
typically use cartoon edge line patterns and region extraction to
establish temporal correspondences. Globally Optimal Toon Track-
ing [Zhu et al. 2016] detects cartoon regions and then solve the
temporal tracking; A similar pre-processing region extraction step is
proposed in [Liu et al. 2013]. Vectorizing Cartoon Animations [Zhang
et al. 2009] use flood filling to achieve cartoon color blocks. The
usage of cartoon features is also extensively discussed in Sketching
Cartoons by Example [Sykora et al. 2005] and TexToons [Sykora et al.
2011]. Recent cartoon techniques also opt flow or dense correspon-
dence like ToonSynth [Dvoroznak et al. 2018] and EbSynth [Jamriska
et al. 2019]. Autocomplete Hand-drawn Animations [Xing et al. 2015]
use line-drawing-based correspondence to analyze the key-frame
motions. The performance of methods using cartoon edge lines or
regions depend on the accuracy of the line or region extraction.

Video decomposition. Machine learning has facilitated recent
advances in video decomposition. Omnimatte [Lu et al. 2021] de-
composes input video sequences by training neural networks to
reconstruct the scene. Layered Neural Rendering [Lu et al. 2020] is
oriented to decompose people in videos and trains neural networks
to reconstruct backgrounds and human body parts. Another type of
approaches views input videos as compositions of multiple warped
2D textures. A typical example is Unwrap Mosaics [Rav-Acha et al.
2008] that warps multiple 2D image textures to reconstruct a video
for manipulation purposes. Layered Neural Atlases [Kasten et al.
2021] trains neural networks to learn such warping and Deformable
Sprites [Ye et al. 2022] extends this architecture. More generally,
[Lao and Sundaramoorthi 2018] addresses 3D motions using layered
model; [Ost et al. 2021; Yu et al. 2022] explores 3D object discovery
in various settings. We will discuss approaches of this category in
our comparisons.

Besides implicit neural representation, self-supervised neural de-
composition of videos is studied in various ways. MarioNette [Smirnov
etal. 2021] is a deep learning approach that decomposes sprite-based
video animations into a disentangled representation of recurring
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Fig. 4. Overview: In this example, our framework decomposes a cartoon animation into 3 sprites by optimizing 3 sprite content matrix Cy._3, 3 sprite
transform matrix Hy__3 and 3 pixel MLPs Mj___3. The number of sprites can be different in other cases. ©Boy flying a kite, used with artist permission.

graphic elements in a self-supervised manner. DTI-Sprites [Mon-
nier et al. 2021] represent video objects as explicit transformations
of a small set of prototypical images, and then train neural net-
works to learn the representations. We will include these methods
in experiments.

Motion decomposition. Videos can also be decomposed using
motions. [Shi and Malik 1998] proposes a spatio-temporal image
clustering algorithm. The clustering of optical flow or motion cues
are also extensively discussed in [Brox and Malik 2010; Keuper 2017;
Keuper et al. 2015; Ochs and Brox 2011; Ochs et al. 2014a]. Recent
video object segmentation approaches also show that the pixel-
wise flow and motions can be used in learning the segmentation of
moving objects [Dave et al. 2019; Xie et al. 2019; Yang et al. 2019].
As we discussed before, the motions in cartoon animations can be
arbitrarily drawn by artists. The detected cues of motions is not
always accurate and needs to be partially trusted.

Layer decomposition. The functionality of decomposed layers
depends on the problem formulation of layer cues, e.g., local simi-
larity, color geometry, illumination, efc. Lin et al. [2017] propose to
fully decompose images into several component layers. The adap-
tive image decomposition based on color segmentation is discussed
in [Aksoy et al. 2017]. Zhang et al. [2017] propose to optimize the
decomposition to re-color images. Chang et al. [2015] propose an ed-
itable palette-based layer extraction. Chang et al. [2015] re-colorize
photo using palette clustering. The grouped image color theme can
also be manipulated in [Nguyen et al. 2017]. Tan et al. [2017; 2018]
show that all pixels in an image can be reproduced by mixing the
color vertices on the RGB convex hull, where they decompose image
into layers using the vertex colors.

Neural representation and Multilayer Perceptron. Pixel MLPs
(or called Coordinate-based MLPs, Implicit MLPs, Implicit Neural

Representations) show advanced performance in representing 3D
geometry [Groueix et al. 2018; Mescheder et al. 2019; Mildenhall
et al. 2020; Park et al. 2019] and dynamic video scenes [Li et al. 2020].
Such representations also shows that the complicated mappings in
2D spaces can also be fitted in pixel-wise, even without learning
local patterns, e.g., [Tancik et al. 2020], SIRENs [Sitzmann et al.
2020], etc. Our approach is based on pixel-wise learning to facilitate
accurate decomposition.

3 APPROACH

We present an overview of our framework in figure 4. Our approach
decomposes an input cartoon animation into several “sprites” with
independent contents and transforms. The decomposition of each
sprite is guided by all other sprites, so that the sprite extraction
against complicated and irregular motions or appearances can be
eased once some relatively simple sprites are solved. We first intro-
duce the framework architecture in Section 3.1, and then describe
the objective of our framework in Section 3.2. The training details
are presented in Section 3.3.

3.1 Sprite-from-Sprite Decomposition

Given an input cartoon animation RGB video I € RTXW*hX3 with T
frames and w X h size, our approach outputs N sprites (fig. 4a), each
with a content matrix C; € RT*Wixhix4 and a transform matrix
H; € RT*3X3 \where i = 1...N. The content matrix C; is a RGBA
transparent video with independent width w; and height h;; the
transform matrix H; is a sequence of 3 X 3 homogeneous transforms.
Both the content C; and the transform H; are learnable parameters.

The homogeneous transform is consistent to the standard of
most commercial animation software (e.g., Adobe Animate) for
representing various projections like rotating, scaling, translating,
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shearing, etc. Given the transformation H;; € R33 (¢ is frame
index) and a pixel position p = [p;, px, pylT € R3, we compute
the transformed p” = [py, p, p 1™ with

Pe=% py=" where [u 0 fIT=Hislpr.py 11T (1)
f f

and note that this transform do not influence the temporal index p;.
We define that the matrix H; ; projects any pixel position p from the
screen space (coordinates of I) to the sprite space (coordinates of
C;), simplified as p’ = H;; - p. We use a pixel interpolation function
¢ (details in Sec. 3.3) to obtain the transformed appearance of sprites
as ¢(C;, H; - p), abbreviated as C;(H; - p).

During training, we compose the sprites to obtain N “subset”
compositions (fig. 4b). These compositions will be fed into neural
networks so that the learning of each sprite can be guided by all
other sprites. Denoting that (-), gets the alpha opacity of a RGBA
transparent color, we use back-to-front alpha blending with

Qip=) Ci(H; - p)(C;(H; - p)la | | (1= (Ck(Hi - p))a) (2)

J#i k#ik<j

where Q; € RTXWXhX4 (fig 4b) is one computed composition. For
each sprite, we train a pixel Multilayer Perceptron (pixel MLP) to
guide the sprite decomposition using the mapping

M;: [p Ip Qi,p]T - Vip (3)

where M; : R1® — R* is a trainable mapping that extracts the
sprite visible areas V; € RTXwxhx4 in each frame (fig. 4c). Each
pixel value of V; is processed independently. Each pixel MLP M; has
independent weights.

In this way, the learning of each sprite is conditioned on and
guided by all other sprites. Although all sprites are optimized to-
gether, the interaction between the sprites (the contrast between
sprites) is important for achieving high-quality results. Because both
the input and output of the MLP are sprites, we call this method
sprite-from-sprite decomposition. Besides, since we treat all sprites
equally, we do not need to explicit classify the sprites into "easy" or
"challenging" ones. This avoids artifacts caused by hard thresholds
and classifications.

We jointly train this fully-differentiable framework so that the
sprite visible areas V; can reconstruct the original video and the
sprites contents and transforms {C;, H;} can memorize and repro-
duce those visible areas in a consistent way. The learning objective
can be written as

L = arec Lrec + @memLmem + XoceLoce + v Liv + aflow Lilow (4)

where o values are balancing parameters. We next detail these
objectives.

3.2 Learning Objective

Reconstruction consistency. The reconstruction of the original
cartoon animation is given as

Lrec = acolorLeolor + aalphaLalpha (5)

Layer A, xy-view xt-view Layer B, xy-view xt-view

(b) With temporal TV-L1 minimization

Fig. 5. Minimizing temporal variation: We present two sprites extracted
by our framework with or without temporal regulation. ©Boy flying a kite,
used with artist permission.

where acolor and apha are weights. The input cartoon video has to
be reconstructed by the visible parts of all sprites as

Leoor = 1l = Y (Vip)res (Vip)ell3 ©)

where (-)reg and (-)» gets the RGB color and alpha weight. The
alpha weights need to sum up as one

Lapha =11= )" (Vip)all} )

where we note that the blending is order-invariant (different from
back-to-front blending). We view the (V; p) as a soft estimation to
what extent the i-th sprite is visible in the screen.

Memory consistency. We encourage the sprite contents and trans-
forms to memorize the sprite visible areas in video frames

Lem = O0ipl|Vip - Ci(H; - p)lI3 ®)

where O; € RT*W* s an inverted occlusion map (occluded pixels
are zeros and other pixels are ones). This map is computed as a soft
alpha weight summing up of all visible sprites above the i-th sprite

6i,p =1- Z (Vk,p)a 9
k>i
and we note that all the non-occluded colors and alpha weights in
Vi are memorized by the sprites as contents and opacity.

Temporal consistency. If without any temporal regulation, the
framework may cheat with some trivial solutions, e.g., one sprite
copying the input video and all other sprites being blank (fig. 5a).
We regulate the sprites with a temporal TV-L1 denoising

Liv = [ViCiplla (10)

where V; computes the matrix gradient over the t-axis. This regula-
tion encourages temporal consistency inside each sprites (fig. 5b).
In extreme cases, e.g., when the sprite animation only contains
transformations of a static image, the temporal variation L, can
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Fig. 6. Decomposing optical flow: We decompose an input optical flow
into a flow outside sprites and a flow inside sprites. ©Kung Fu, used with
artist permission.

be minimized to zero. In other cases, the minimization facilitates
object alignment inside sprites.

Occlusion consistency. The occlusion between sprites regulates
the visible area of each sprite with

Lo = { 11 = (Vip)alld if |1y = (Qip)resll3 = proce, (11)
0 others.

where ||Ip — (Qj,p)regll2 is the color distance between the original
video and the composition of all sprites excluding the i-th sprite,i.e.,
the color difference between compositions with and without the i-th
sprite. If this difference is large enough (greater than a parameter
Hocc) at a position p, then this screen position must be occluded by
the i-th sprite and the (V; p)q is encouraged to be large.

Optical flow consistency. Although our self-supervised frame-
work can decompose sprites without any external data, we found
training with optical flows can improve the separation of multi-
ple sprites. As we discussed before, cartoon animation contains
arbitrarily drawn motions of great complexity, making the pixel-
level correspondence not always accurate. Our approach only par-
tially trusts the optical flow. We decompose an input optical flow
F11212 ¢ RWXhX2 jnto a flow outside sprites FL1 712 ¢ RWxhx2
and a flow inside sprites F/! 72 ¢ RWXhX2 g6 a5 to establish the
connection between the flow and sprites (fig. 6). The flow outside
sprites is computed with

2 —
F % =3 (Viay, (Hig - Hin - p— p) (12)
i

where Hl._é - H;11 - p means that we first transform a pixel position

p from screen space to the sprite space at time t1 using H; 1, and

then at time t2, we transform the position back to screen space using
Hl_é The offset (Hl.’_é -Hjt1 - p— p) can be viewed as a flow outside
the i-th sprite. By composing these offsets with the sprite visible
areas V; o, we obtains the outside flow F,. The inside flow F; an be
written as a residual flow between the input flow and the outside
flow

FS’—AZ _ F}t;l—»tz _ Fé;—»tz (13)
and we regulate the inside flow with

t1—t2))2 : t1—t2
IFA=22 i (I < oy

Lﬂow = { 0 (14)

others.
where the inside flow F; is minimized to zero if the original flow
magnitude is relatively low. This makes sure that the dominant part
of the motion is contributed by the outside transformations. We
would like to point out that this regulation only partially trust the
optical flow; only pixels with relatively low (< pfow) inside flow are
involved in the optimization. We set iy, as a very large number
at the beginning of learning and then gradually reduce it during
iterations.

3.3 Training

For each sprite, the trainable variables are a content matrix C; €
RT*wixhiX4 4 transform matrix H; € RT>3%3 and a Pixel MLP M;.
Given any pixel position p, we use the sampling function ¢(-, -) to
obtain the content values as ¢(C;, p). We apply several schedules
to make the training practical:

Automatic padding. When ¢ (-, -) receives a pixel position p outside
the queried matrix (or when the p contains negative values), the ¢
automatically pad the matrix. The padding is limited to a maximum
padding distance dmax to avoid memory leak.

Continuous sampling. To avoid aliasing caused by discrete sampling
in both forward feeding and backward gradient propagation, we
apply mipmap-like pyramid technique [Williams 1983] to each sprite.
For each content matrix C;, we generate at most 5 mipmap-like
pyramid level mip;_5(C;). We define mipy(C;) = C;. Each map is
independently trainable. The final sampling can be written as

5
$(Ciup) = Y. do(nipk(C. = p) (15)
k=0

where ¢, (-) is bilinear interpolation. After training, all maps are
merged into original matrices using the same Eq. (15).
Valid transformation. We make sure that all the homogeneous trans-
forms are valid by checking their determinants after each training
iterations. If we find any transform matrix with zero determinant,
we replace that matrix with a 3 X 3 identity matrix.
Pixel Multilayer Perceptron. The MLP contains 1 input layer (10
nodes), 8 fully-connected hidden layers (256 channels), and 1 output
layer (4 nodes). All hidden layers are activated with Rectified Linear
Unit (ReLU). The output layer is activated with Sigmoid. We do not
use positional encoding.

3.4 Implementation Details

Our framework supports flexible resolutions and in most experi-
ments our test animations are between 1280 X 720 and 256 X 128



6 « Lvmin Zhang, Tien-Tsin Wong, and Yuxin Liu

Fig. 7. Qualitative results: We present qualitative results of our approach. In each example, the left most image is from the input video, while all other
images are from decomposed sprites. ©Kung Fu, Water Monster, Popcorn, Office man, Robot and Banana, used with artist permission.

with about 100 frames. All RGBA values are in the range between
0 and 1. The default parameters are arec = 1.0, dmem = 1.0, oce =
1.0, aty = 1.0, ¢fow = 1.0, &color = 1.0, Qalpha = 1.0, floce = 0.1, and
Hflow is linearly deceased from 100 to 0.1 during training. We train
with 100K iterations each video. In the first 10K iterations, we set
flow = 100.0 as a warmup (we have 2 warmup stages: one for the
alpha learning for the optical flow, and one for the initialization
of the homogeneous transforms). The input optical flow is RAFT
[Teed and Deng 2020]. We use a batch size of 10K pixel points. All
sprite content matrices are initialized as the same size as the input
video. The max distance of the automatic padding is dmax = 512.
We use Adam optimizer and a learning rate of le — 4. All sprite
transforms are initialized with identity matrices. After training, we
remove empty border areas (with zero opacity) in content matrices
to obtain the sprite size w; X h;. Training one animation video takes
about 4 hours in a NVIDIA RTX 3080.

4 EXPERIMENT
4.1 Qualitative results

We present qualitative results of decomposed sprites in figure 7. The
contents of the input animation covers a variety of topics, including
human, animal, robots, etc. More results are presented in the video
and supplementary materials.

4.2 Comparison to previous methods

We present a visual comparison of the decomposed sprites. We focus
on the comparison to cartoon decomposition and video decomposi-
tion methods: (1) Globally Optimal Toon Tracking [Zhu et al. 2016]
is a cartoon animation tracking method that detects the motion re-
gions that shares high similarity. This method is a typical traditional
method that depends on the cartoon edge and region extraction to
process animations. This method does not by default merge regions
into sprites, We achieve sprite decomposition using the connectivity
detection in their framework [Zhu et al. 2016]. (2) Omnimatte [Lu

et al. 2021] train neural networks to decompose any video into lay-
ers. This method is self-supervised and does not depend on prior
knowledge of natural videos so that the method can also be applied
to cartoon videos. (3) Layered Neural Atlases [Kasten et al. 2021] is
a typical neural network method that decompose videos by fitting
deformed 2D textures. This method models the animations in a
video as rigid or non-rigid deformations of global textures. This
allows the video to be decomposed in a self-supervised way. (4)
Deformable Sprites [Ye et al. 2022] is an enhanced approach that
also uses deformation model but can automatically determine the
object masks (using optical flow guidance). This method is one of
the state-of-the-art methods in video decomposition. It is worth
noticing that the methods (2) and (3) may require users to give an
initial coarse mask of the object for warmup stages. In this case, we
use the automatically generated mask of (4), since the architecture
of (3) and (4) shares similarity.

As shown in figure 8, we can see that traditional cartoon process-
ing method [Zhu et al. 2016] may achieve sharp and clean results
since the decomposition is based on image segmentation; the draw-
back is that the artifacts of mis-segmentation is non-trivial, and the
occluded areas needs additional considerations. The deformation-
based neural network approaches [Ye et al. 2022] and [Kasten et al.
2021] causes blurring artifacts, which is mainly caused by the global
deformation formulation. Since cartoon animations contains many
large and irregular motions, the pixel-space deformation is not suffi-
cient to model all animations. [Lu et al. 2021] shows relatively better
results because this method consider each frame independently and
do not use global deformation constraints; the blurring artifacts of
this method is caused by the appearance approximation of neural
networks that can be ill-conditioned since a optimal global approx-
imation can be undetermined. The sharp and clean result of our
approach is mainly because of our “sprite-from-sprite” architecture
that use some relatively simple sprites to guide the decomposition
of more challenging sprites.
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Fig. 8. Comparison to previous methods: We compare our result to previous related methods. The left most images are original frames from input
animations. ©Nerdy Dragon, Walk with Pride, Cute Printer, used with artist permission.

4.3 Evaluation of segmentation masks

We compare the quality of our sprite masks to other unsupervised
motion segmentation baselines using DAVIS2016 [Perazzi et al.
2016], FBMS [Ochs et al. 2014b], and Seg TrackV2 [Li et al. 2013].
We test with baseline methods [Koh and Kim 2017; Lao and Sun-
daramoorthi 2018; Yang et al. 2021b,a, 2019]. We also compare with
more recent methods like [Ye et al. 2022]. We report quantitative
performance in Table 1. We also include more results in Figure 9.
Although our approach is not designed for video object segmenta-
tion, the overall performance is comparable with latest methods,
e.g., Video Sprites [Ye et al. 2022].

4.4  Perceptual user study

In order to perceptually evaluate and compare our approach with
existing methods, we perform a perceptual user study focusing on

human aspects of different decomposition algorithms. In particular,
the user study involves 15 individuals, where 10 individuals are non-
artist students, and the other 5 are professional artists. We sample 20
animation clips, and then use 5 methods to generate decompositions
for each animation clip. This leads to 20 decomposition groups, with
each group containing 5 results from 5 methods. The participants
are invited to rank the results in each group. When ranking the
results in each group, we ask users the question — “Which of the
following results do you prefer most? Please rank the following
sprites according to your preference”. We use the Average Human
Ranking (AHR) as the testing metric. For each group in the 150
groups, one random user ranks the 5 results in the current group
from 1 to 5 (lower is better). Afterwards, we calculate the average
ranking obtained by each method. We also report how many times
a method is preferred by most of the users.
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Fig. 9. Results of mask segmentation: We present mask segmentation results
images are from the DAVIS dataset.Cutting Tree, Fairy Tail, Old Man, Office Man,

Table 1. Quantitative mask evaluation on VOS benchmarks. We com-
pare masks from our method with top-performing baselines on the video
object segmentation datasets. The experiment setting is consistent with
Deformable Sprites [Ye et al. 2022].

DAVIS FBMS SegTV2

ARP [Koh and Kim 2017] 76.1 59.5 57.0
ELM [Lao and Sundaramoorthi 2018]  61.4 61.0 -

MG [Yang et al. 2021b] 68.0 50.5 57.9
CIS [Yang et al. 2019] 712 635 623
DyStaB [Yang et al. 2021a] 80.5 71.2 74.3
DF [Ye et al. 2022] 79.2 71.8 72.3
Ours 78.2 71.9 70.1

We compare our approach with [Zhu et al. 2016], [Ye et al. 2022],
[Kasten et al. 2021], and [Lu et al. 2021] Results are shown in Table 2.
We find that users prefer our approach over all other approaches
(in 19/20 cases). We also observe that: (1) Our framework outper-
forms the secondly best method by a large margin of 0.7/5. (2) The
method [Lu et al. 2021] reports the secondly best score. (3) The two
deformation-based methods [Kasten et al. 2021; Ye et al. 2022] re-
ports similar perceptual quality, with [Ye et al. 2022] slightly better
than [Kasten et al. 2021]. (4) The traditional approach [Zhu et al.
2016] reports a relatively medium performance, which is mainly be-
cause image segmentation method can also produce sharp and clean
results but the mis-segmentation may reduce the user preference
rate.

4.5 Ablative study

We present an ablative study in figure 10. We first focus on an
alternative architecture where we remove the “sprite-from-sprite”
learning by simply set all Q; as all zero matrices. This will directly
disconnect the sprite subset composition step and the main MLP. No
that even in this configuration, the MLP can still learns a mapping,
to some extent, as the MLP still receives the entire input animation
video and can learn to segment the video only using the input x,y,t
index and RGB values. We present examples in figure 10a, where we
can see that without the guidance of those relatively simple sprites,

Animation DyStaB MG VS Ours

of our approach and related methods. The ground truth (GT) of real-world
used with artist permission.

Table 2. Average Interaction Time and User Ranking. We report the
recorded preferred case counts and user ranking (1 to 5 indicates worst
to best) of different methods. For the preferred cases, we show both the
integer value of how many times a method is preferred by most users, and
percentage value of the soft user preferences. 15 users are involved in the
user study. Best results are shown in bold.

Method Preferred cases  Avg. rank
[Zhu et al. 2016] 0(0.1%) 2.9+05
[Ye et al. 2022] 0(0.1%) 1.8+0.3
[Kasten et al. 2021] 0(0.1%) 1.7+0.2
[Lu et al. 2021] 1(4.6%) 3.9+0.6
Ours 19 (95.1%) 4.6 £ 0.1

the decomposition of the challenging sprites is difficult and can fail
the model into collapse modes.

We also discuss the effect of the occlusion consistency. Without
the occlusion consistency (figure 10c), the model may cheat to learn
a color palette and then use color blending to reconstruct the orig-
inal animation. A learning objective of occlusion consistency can
effectively reduce these artifacts. Furthermore, if our framework
is trained without optical flows, the separation capability of multi-
ple objects becomes a bit weaker. For example the hand of the boy
(figure 10c) may have “ghost” artifacts in the background sprite if
trained without optical flow consistency. Finally, the proposed full
method (figure 10d) can facilitate the separation of multiple sprites
by achieving a balance between these consistencies.

4.6 Applications

With the decomposed sprites available, we can achieve a variety of
manipulations of the input cartoon animation. As shown in figure 11,
we can see that a re-composing of the animation can alter the ratio
of cartoons so that it can be displayed onto screen devices with
difference ratios. We also demonstrate that the decomposed cartoon
sprites can also be used in recoloring, retiming, or reposing the
animations, e.g., the animation of the two robots in figure 12.

To be specific, in order to change the transform (or timing) of a
sprite, we apply a global offset (or bilinear resampling, respectively)
on the transformation sequence H;. The recoloring is also a global
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(c) Without optical flow consistency

(d) Full method (proposed)

Fig. 10. Ablative study: We investigate the influence of each components in our framework by removing them one-by-one. We present sprites with the most

salient differences. ©Sandwich Town, used with artist permission.

&

Decomposed sprites

Animation

Animation with modified ratio

Fig. 11. Adjusting animation ratio: By decomposing and composing
sprites, we can change the ratio of an animation. In this example, we present
an extreme case where the width is significantly enlarged. ©Strange Bird,
used with artist permission.

editing, we recolor a sprite with

f(c) =ac+(1—-a)y where a = clamp(||c —x]|1) (16)

where f(+) is a recoloring mapping applied to all pixels in one sprite.

The c is pixel color, x is color to change (the original color), and y is
the target color (the new color). The operation “clamp” will clip any
value to the range [0,1].

4.7 Comparison to real sprites

We were also interested in the question of how close our generated
sprites were to the artist’s real sprites. We invited the artist to give
us the real composition sprites and then we compared our generated

Sprite A
o5,
Sprite C

Sprite B
|

[ Adjust size
r Adjust hue v

Fig. 12. Frame content manipulation: All the adjustment are global ma-
nipulations and all frames of one sprite only need one editing. By decom-
posing animation into sprites, we can achieve various manipulations like
recoloring, reposing, retiming, etc. ©Chasing the Robot, used with artist per-
mission.

results with the artist’s data. As shown in figure 13, we can see that
some parts of our extracted sprites are consistent with the artist’s
real sprites, e.g., the bird that is animated in a separated sprite. But
we also notice that the real sprites are often much more detailed, e.g.,
the windows and wall paintings above the room in the background
are artist-defined sprites. Automatically extracting these sprites can
be very difficult because these elements are relatively stationary in
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Decomposed sprites

N “i‘w‘u;“‘v‘““(.‘h |

Real sprites from artists

brb o8

Fig. 13. Comparison to real sprites: We present a comparison between
our decomposed sprites and ground truth sprites given by one professional
artist. © Hammerbird, used with artist permission.

% e\ 4

Sprite A Sprite B B B

A A
[( \ )
Sprite C W ‘ C C
t=15 t=75 t=115

Fig. 14. Interactive decomposition with user scribbles: Our framework
can receive user scribbles to facilitate richer decomposition,e.g., extracting
more layers inside sprites. In this example, the user scribble annotate one
single frame. ©Boy flying a kite, used with artist permission.

motion and no motion cues can be used, so new prior knowledge,
assumptions of colors, or user interaction need to be introduced for
further decomposition.

4.8 Interactive decomposition with user scribbles

When users want to guide the decomposition, they can use scribbles
to label some areas to make the distribution of sprites more suitable
for their actual needs. For example, in figure 14, the pixels covered
by scribbles are considered to be labeled with categories. We directly
use Mean Squared Error (MAE) to make the local transparency (the
alpha channel of V;) of the corresponding sprites on these pixels as
close to “1” as possible. We can see that such interaction can support
a more detailed decomposition that better meets the specific needs
of artists in their daily work.
To be specific, we optimize an additional loss with

Luyser = Ui”Vi - 1||§ (17)

where U; is the user-specified binarized masks for each sprites. To
facilitate straight forward editing, the user interface can use scribbles
with different colors, and then convert colored scribbles to multiple
masks.

4.9 Comparison in different applications

We compare our approach to MarioNette [Smirnov et al. 2021] and

DTI-Sprites [Monnier et al. 2021] in their experimental settings.

Video DTI-Sprites

MarioNette Ours

Video (Game record)

Fig. 15. Comparison in other applications: We compare our method to
MarioNette and DTI-Sprites. We use the experimental settings as recom-
mended in their papers.

ﬁ R &3 % % s % @

D= || 28T

> | Ll @!||® % | ~|X

B = | 1||F Q%
Ground truth sprites Ours

Fig. 16. Experiment on synthetic sprites: We test our method with rela-
tively large amount of sprites at relatively low resolution.

MarioNette is inspired from screen capture of a video game like
Mario. This experiment is targeted at extracting sprite elements
from gaming videos. We use a typical experimental setting of four
moving gameobjects. The results are presented in figure 15. We can
see that this approach achieves comparable results to MarioNette.
DTI-Sprites is another neural representation methods that can de-
compose videos in a self-supervised manner. We also attach the
comparison to DTI-Sprites.

4.10 Robustness and Noise tolerance

We perform a robustness test using a synthetic experimental setting.
We synthesize animation with relatively more sprites at relatively
low resolutions and test the capability of framework. To be specific,
we synthesize animations using one background and 16 foreground
random moving sprites. All sprites are real sprites provided by
artists. The moving include translating and rotating. The results are
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25%

? A .
A -

Sprite A Sprite B

Input noise

Fig. 17. Noise tolerance test: We test our approach with different synthe-
sized noise levels to test the framework robustness. The noise are Gaussian
distribution in RGB place that replaces the pixel colors at a certain percent-
age as shown in the figure.© Water Monster, used with artist permission.

R B AR R .~

Corrupted legacy animation Sprite A Sprite B
Fig. 18. Handling corrupted legacy animation: We test our approach

using legacy animation videos with severe film noise.

>

2 ul = 2
Sprite B

Illumination Effects Sprite A
Fig. 19. Videos with Illumination effects (failure case): We test our
approach using animations with strong illumination effects with flashy
light and shadows. ©Flash boy, used with artist permission.

presented in figure 16. We can see that, although not perfect, this
method can extract visually salient sprites from the animation.

We also test the method with noise tolerance. When the pixel
noise of standard normal distribution is applied to the videos, the
quality of sprites degrade, while the boundary of the sprites are still
sharp and clean, as shown in Figure 17. We also test with corrupted
animations from legacy footage as shown in Figure 18. Our discovery
is that the “legacy footage” (or film noise) can be smoothed by this
method.

4.11 Limitation

First, since our method utilizes the color appearance of the ani-
mation, the MLP may not have a way to get a valid input if the
animation does not have continuous color, e.g., line drawing ani-
mations. Second, when complex lighting changes inside the scene,
even if the sprites are successfully decomposed, the lighting will still
remain on the sprite’s appearance instead of being decomposed out.
This may require further intrinsic decomposition or the addition of
additional advanced blending layers that can be learned. Finally, it
can be difficult to separate multiple objects if they are completely

Real-world texture (water wave) Decomposed sprites

Fig. 20. Videos with real-world texture (failure case): In this example,
the wave of water is a global animated texture throughout the video. The
video is from DAVIS dataset.

Input frames (with "depth jump")

Decomposed sprites

Fig. 21. Videos with "depth jump" (failure case): We test our approach
using videos with sprites that "jumps" between depth layers. ©Birds and
Burgers, used with artist permission.

stationary and without any motion differences. We also note several
additional failure cases:

Intensive illumination effects. As shown in Figure 19, when the
input animation has strong illumination effects like flashing and
noisy shadow, the recognition of sprites can be influenced, leading
to inaccurate sprites extractions.

Real-world animated texture on objects. As shown in Figure 20,
when objects contains animated texture, e.g., the wave on the water
is animated throughout the video, the texture animation can lead to
defective sprite alignment and then fail the method to decompose
usable sprites.

Sprites with “depth” jumps. As shown in Figure 20, since all
sprites are optimized in a fixed “layer sequence”, if the depth or-
der/layer of objects changes in the video, the quality of sprites can
be influenced.

5 CONCLUSION

We have proposed a MLP-based neural network framework to de-
compose “sprites” from cartoon animations. The method is based
on the observation that cartoon animations may consist of both
simple and challenging sprites: the simple sprites may have reg-
ular motion while the challenging sprites may have complicated
animations and hand-drawn arbitrary motions. Our framework can
automatically discover sprites with simple and regular motion, and
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at the same time, use those simple sprites to guide the decompo-
sition of more complicated sprites. This approach is named after
“sprite-from-sprite” decomposition. We hope this method lead to
sharp-and-clean decompositions can be applied to many artistic use
cases.
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