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SmartShadow is a deep learning application for digital painting artists to
draw shadows on line drawings, with three proposed tools. (1) Shadow brush:
artists can draw scribbles to coarsely indicate the areas inside or outside
their wanted shadows, and the application will generate the shadows in
real-time. (2) Shadow boundary brush: this brush can precisely control the
boundary of any specific shadow. (3) Global shadow generator: this tool can
estimate the global shadow direction from input brush scribbles, and then
consistently propagate local shadows to the entire image. These three tools
can not only speed up the shadow drawing process (by 3.1× as experiments
validate), but also allow for the flexibility to achieve various shadow effects
and facilitate richer artistic creations. To this end, we train Convolutional
Neural Networks (CNNs) with a collected large-scale dataset of both real and
synthesized data, and especially, we collect 1670 shadow samples drawn by
real artists. Both qualitative analysis and user study show that our approach
can generate high-quality shadows that are practically usable in the daily
works of digital painting artists. We present 30 additional results and 15
visual comparisons in the supplementary materiel. Finally, the dataset can
also be used in related applications to further facilitate artistic creations.

1 INTRODUCTION
“The purpose of drawing shadow is to show how we understand and
feel about the objects and people.”

— The Art of Comic Book Drawing [Aaseng et al. 2005]

Shadows in artworks are essentially different from that in photogra-
phy or photorealistic fields of computer vision: the artwork shadows
are drawn by artists. These shadows depicts the mood of characters
and express the emotion of artists, without being constrained by
physically correct light transmission laws or geometrically precise
object structures. Artists adjust the location, scale, shape, density,
and many other features of shadows to achieve diverse artistic pur-
poses, e.g., amplification, exaggeration, antithesis, silhouette, etc.
An application that can assist artists in drawing shadows for

line drawings is highly desired. This is not only because creating
shadows on line drawings is one of the most frequent and time-
consuming tasks in the daily work of many digital painting artists,
but also because shadow drawing is the foundation of a wide variety
of further artistic creations, e.g., hard shadows can be smoothed
into soft shadings (with techniques like joint anisotropic diffusion
[Weickert 1998]), shadows can be stylized with hatching or drafting
effects [Zheng et al. 2020], sharp shadows can be used in cel-shading
(see also the YouTube tutorial [Maga 2018]), etc.

Might we be able to achieve a deep learning approach that can
quickly produce visually satisfying shadows given only a few user
indications, saving the time and effort of digital painting artists,
and simultaneously, facilitating more plentiful artistic creations?
We present an interactive shadow drawing application (Fig. 1) to

Fig. 1. Screenshot of the SmartShadow. The user gives scribbles as
shadow indications (on the left) to obtain the high-quality shadow (on
the right). Smiling boy, used with artist permission.

achieve these goals. This application consists of the following three
proposed tools:
The first tool is the shadow brush. Users can draw blue or red

scribbles (e.g., Fig. 2-(a)) to coarsely indicate the areas inside or
outside the shadows they want. This tool does not require users
to have professional drawing skills, as it can “smartly” generate
shadow shapes learned from large-scale artistic shadow data. This
tool is well-suited for shadows without strict shape requirements or
with low shape uncertainty, e.g., inconspicuous background shadow,
dense shadow of gathered small objects, etc.

The second tool is the shadow boundary brush. Users can use this
brush to precisely control the shadow boundaries. They only need
to scribble a small part of their wanted boundary (e.g., the green
scribbles in Fig. 2-(b)), and the tool will automatically estimate
the boundary shape and generate the entire shadow. This tool is
indispensable for professional use cases where the accurate shadow
control is important, e.g., character face shadows, salient object
shadows, close-up shadows, etc.

The third tool is the global shadow generator. This tool can esti-
mate the global shadow direction from input brush scribbles, and
then propagate local shadows to the entire image consistently (e.g.,
Fig. 2-(c)). This tool is user-friendly in that it is fully automatic and
does not require artists to learn any extra technical knowledges,
e.g., managing screen-space shadow direction, world-space light
orientation, etc. This tool is especially effective for complicated art-
works, e.g., drawings with multiple targets, artworks with complex
structure, etc.
These three tools are designed in a data-driven way. To ensure

the robustness and generalization, we learn hierarchical neural
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(a) Shadow brush (b) Shadow boundary brush (c) Global shadow generator
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Fig. 2. Objectives of our three proposed tools. (a) The shadow brush allows users to coarsely control the areas inside or outside shadows. (b) The shadow
boundary brush enables users to accurately control the shadow shapes. (c) The global shadow generator can estimate the global shadow direction and
automatically produce globally consistent shadows. Artworks used with artist permissions.

networks with a large-scale dataset of both real-artist data and syn-
thesized data. In particular, we collect 1670 line art and shadow
pairs drawn by artists manually, 25,413 pairs synthesized by ren-
dering engine, and 291,951 shadow pairs extracted from in-the-wild
internet digital paintings. This dataset can also be used in related
applications to further facilitate richer artistic creations.

Experiments show that the SmartShadow can speed up the shadow
drawing process by 3.1×. User studies demonstrate that users can
use this application to effectively achieve satisfactory shadows that
are practically usable in their daily jobs. Besides, even if the users do
not give any input edits, our approach can still generate plausible
results that are more preferable than other fully-automatic shadow
generating methods. Finally, we present 30 qualitative results and
15 additional comparisons in the supplementary materiel.

In summary, our contributions are: (1)We present the SmartShadow,
a digital painting application to draw shadows on line drawings,
including the tools of shadow brush, shadow boundary brush, and
global shadow generator. (2) We collect a large-scale dataset of
line drawing and shadow pairs drawn by real artists, as well as
shadow data synthesized by rendering engines or extracted from in-
the-wild digital paintings. (3) Perceptual user study and qualitative
evaluations demonstrate that the SmartShadow is more preferable
by actual end users when compared to other possible alternatives.
(4) Results show that the SmartShadow can speed up the shadow
drawing process by 3.1×.

2 RELATED WORK
Artistic shadow creation. Different from photography relighting
or photorealistic rendering [Chen et al. 2010; Debevec et al. 2000;
Matusik et al. 2004; Peers and Dutre 2005; Peers et al. 2009, 2007],
the artistic creation of shadows is a perception-oriented process.
ShadeSketch [Zheng et al. 2020] is the current state of the art in au-
tomatic artistic shadow generating. Sketch2Normal [Su et al. 2018]
and DeepNormal [Hudon et al. 2018a] can generate normal maps
from line drawings. Hudon et al. [Hudon et al. 2018b] also proposed
a vectorgraph-based method for artistic shadow manipulation. Ink-
and-Ray [Sykora et al. 2014] is a typical proxy-based method for
illumination effects, and Dvorožňák et al. [Dvorožňák et al. 2018]
extended this approach to a part-based high-relief proxy structure.
PaintingLight [Zhang et al. 2020b] is a RGB geometry framework

that converts artists’ brush stroke history to lighting effects. Our
approach allows users to intuitively manipulate the shadow with
scribbles, i.e., in a “what you see is what you get” manner.
Shadow synthesis and extraction. To ensure the robustness and
generalization of our approach, we use shadow synthesis and extrac-
tion algorithms to increase the scale and diversity of our training
data. A typical method is intrinsic imaging [Barrow and Tenenbaum
1978] in the field computational illumination. Optimizing-based ap-
proaches [Shen et al. 2011] solve the decomposition by optimizing an
energy with specific constraints. Learning-based approaches [Bar-
ron and Malik 2012; Gehler et al. 2011; Serra et al. 2012] propose
to learn the mapping between the input images and their albedo
images from large amounts of data. Several in-the-wild datasets
[Bell et al. 2014, 2013, 2015; Kovacs et al. 2017] and other synthetic
or annotated datasets [Beigpour et al. 2013; Grosse et al. 2009] make
intrinsic images scalable with deep learning methods.
Interactive creation and cartoon techniques. Scribble-based
interactive tools are shown to be effective in creative fields like
image colorization [Zhang et al. 2017] and sketch inking [Simo-
Serra et al. 2018b]. Another closely related field is cartoon image
processing. Manga structure extraction [Li et al. 2017], cartoon ink-
ing [Simo-Serra et al. 2018a,b, 2016], and line closure [Liu et al. 2018,
2015] methods analysis the lines in cartoon and digital paintings.
A region-based composition method can be used in cartoon image
animating [Sýkora et al. 2005]. Deep learning approaches [Chen
et al. 2018; Wang and Yu 2020; Yi et al. 2019, 2020a,b] process artis-
tic images or cartoon drawings in the domains of photographs
and human portraits. Color filling applications [Sykora et al. 2009;
TaiZan 2016; Zhang et al. 2018] colorize sketch or line drawings with
optimization-based or learning-based approaches. Our approach
generates shadow from line drawings, and can be used in digital
painting and related artistic creation scenarios.

3 METHOD
We train a deep network to draw shadows given the line drawings
and user input scribbles. In Section 3.1, we describe the objective
of the neural architecture and the three proposed interactive tools:
shadow brush, shadow boundary brush, and global shadow gener-
ator. We then describe our presented dataset and the customized
training method in Section 3.2.
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Fig. 3. Network architecture.We train two branches of the shadow drawing network. Both branches use the blue layers for predicting the shadow. The
direction model branch uses red layers for predicting the global shadow direction. The shadowmodel branch uses blue layers for predicting the final output
shadow. All convolutional layers use 3 × 3px kernels. We do not use any normalization layers. Shortcut connections are added to upsampling convolution
layers. Boy looking upside, used with artist permission.

3.1 Interactive tools for shadow drawing
The inputs (Fig. 3-left) of our approach are the line drawing 𝑿 ∈
R𝐻×𝑊 ×1 along with the RGBA user scribble canvas denoted by
𝑼𝐻×𝑊 ×4. The output̂𝒀 ∈ R𝐻×𝑊 ×1 is the estimation of pixel-wise
shadow probability, which is binarized (threshold is 50% gray) and
blended (multiplied) to the original line drawing for shadow effects
(Fig. 3-right). The mapping is learned with the neural networks
F (· ;𝜃 ), parameterized by 𝜃 , with the architecture specified in Fig. 3.
We train with the data distribution D with line arts, user inputs,
and desired shadows. We minimize the objective with likelihood L
describing the distances between the estimation and ground truth
as

𝜃∗ = argmin
𝜃
E𝑿 ,𝑼 ,𝒀∼D [L(F (𝑿 , 𝑼 ;𝜃 ), 𝒀 )] . (1)

We learn two network branches: the shadow model F𝑠 (· ;𝜃𝑠 ) and
the shadow direction model F𝑑 (· ;𝜃𝑑 ). In inference, the direction
model estimates the global shadow direction 𝑫 ∈ R3 for the shadow
model to predict the shadow with

�̂� = F𝑠 (𝑿 , 𝑼 ,𝑫 ;𝜃𝑠 ) and 𝑫 = F𝑑 (𝑿 , 𝑼 ;𝜃𝑑 ) . (2)

During training, the scribbles are synthesized for our tools by giving
projections of the ground truth shadow 𝒀 with the projection func-
tion P𝑢 as 𝑼 = P𝑢 (𝒀 ). Because the training synthetically generates
user inputs, our dataset only needs to contain line drawings, shadow
directions, and our wanted shadows. In particular, we solve two
sub-problems for the shadow model and shadow direction model
with

𝜃∗
𝑑
= argmin

𝜃𝑑
E𝑿 ,𝒀 ,𝑫∼D [L𝑑 (F𝑑 (𝑿 , 𝑼 ;𝜃𝑑 ),𝑫)] ,

𝜃∗𝑠 = argmin
𝜃𝑠
E𝑿 ,𝒀 ,𝑫∼D [L(F𝑠 (𝑿 , 𝑼 ,𝑫 ;𝜃𝑠 ), 𝒀 )] ,

(3)

where L𝑑 is a likelihood function for the shadow direction estima-
tion problem. The three proposed shadow drawing tools are detailed
as follows.
Shadow brush. The shadow control is achieved by projecting P𝑢
to sample pixels inside (resp., outside) the ground truth shadows
in 𝒀 as blue (resp., red) scribbles. We observe that, unlike common
pixel sampling problems (e.g., [Sangkloy et al. 2017; Zhang et al.
2018, 2017]) where pixels are routinely distributed and sampled

uniformly, shadow images are unique in their unbalanced pixel
quantity inside and outside shadows. Based on this observation, we
propose to balance the pixel sampling by introducing a Bivariate
Normal Distribution (BND), with a Probability Density Function
(PDF) denoted by 𝑓𝑏 (·, ·). We sample 𝑛𝑖 pixels inside the shadows
and 𝑛𝑜 pixels outsides, subjecting to the Bivariate Normal PDF
[Wikipedia 2020] as

𝑓𝑏 (𝑛𝑖 , 𝑛𝑜 ) =
exp(− 1

2(1−𝜌2) 𝑝𝑏 (𝑛𝑖 , 𝑛𝑜 ))

2𝜋𝜎𝑖𝜎𝑜
√︁
1 − 𝜌2

, (4)

where 𝑝𝑏 (·, ·) is a bivariate Gaussian normal term

𝑝𝑏 (𝑛𝑖 , 𝑛𝑜 ) = (𝑛𝑖−𝜇𝑖
𝜎𝑖

)2−2𝜌 (𝑛𝑖−𝜇𝑖
𝜎𝑖

) (𝑛𝑜−𝜇𝑜
𝜎𝑜

) + (𝑛𝑜−𝜇𝑜
𝜎𝑜

)2, (5)

where {𝜇𝑖 , 𝜇𝑜 , 𝜎𝑖 , 𝜎𝑜 , 𝜌} are bivariate normal distribution values with
8, 8, 2, 2, 0.5. Using these sampled pixels as starting positions, we
synthesize small scribbles with line segments at random rotation
𝜃 ∼ 𝑈 (−𝜋, 𝜋), length 𝑙 ∼ 𝑈 (5, 15) pixels, and width 𝑤 ∼ 𝑈 (1, 3)
pixels.
Shadow boundary brush. The accurate shadow boundary control
is achieved by projecting P𝑢 to sample shadow edges in the ground
truth 𝒀 as green scribbles. We randomly sample 𝑛𝑏 ∼ 𝑈 (0, 16) pixels
of these edges as scribble starting points, and then synthesize small
solid circles at random radius of 𝑟 ∼ 𝑈 (5, 15) pixels. Besides, we
observe that an important characteristic of shadows drawn by artists
is the smooth boundaries and sharp corners. We encourage such
smoothness and sharpness by introducing an anisotropic penalty
𝜙 (·) within the customized likelihood

L(�̂� , 𝒀 ) = 𝜆𝑎𝜙 (�̂� ) +
∑︁
𝑝

| |�̂�𝑝 − 𝒀𝑝 | |22 , (6)

where 𝑝 is pixel position, | | · | |2 is Euclidean distance, 𝜆𝑎 is weighting
parameter, and the penalty 𝜙 (·) can be written as

𝜙 (�̂� ) =
∑︁
𝑝

∑︁
𝑖∈𝑤 (𝑝)

∑︁
𝑗 ∈𝑤 (𝑝)

(
𝛿 (𝑿 )𝑖 𝑗 | |�̂�𝑖 − �̂�𝑗 | |22

)
, (7)

where𝑤 (𝑝) is a 3× 3 window centered at pixel position 𝑝 , with 𝛿 (·)
being a Gaussian anisotropic term

𝛿 (𝑿 )𝑖 𝑗 = exp(−||𝑿𝑖 − 𝑿 𝑗 | |22/𝜅
2) , (8)
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where 𝜅 is an anisotropic weight. This term increases and encour-
ages smoothness when 𝑤 (𝑝) is located inside shadow areas with
no steep line transitions in the line drawing 𝑿 , while decreases and
allows for sharpness when𝑤 (𝑝) comes across salient line drawing
patterns like corners or contours. Taking the anisotropic filtering
as a simple example with

(a) (b) (c) (d) (e) (f)

where (a) is a line drawing, (b) is a flawed shadowwith many defects,
and (c) is their blending. We can see that (c) is as flawed as (b). We
may filter (b) with an anisotropic filter iteratively to get (d), and
threshold (d) to get (e). Finally, we blend (a) and (e) to get (f). We
can see that (f) is much better than (c). The anisotropic penalty
(Eq. (7-8)) makes use of this anisotropic phenomenon to encourage
the curve smoothness and corner sharpness.
Global shadow generator. The global shadow generating is guided
by the shadow direction 𝑫 = [𝛼𝑥 𝛼𝑦 𝛼𝑧]⊺ with 𝛼𝑥 and 𝛼𝑦 being
in line with the axes of image-space width (right is positive) and
height (upward is positive), and 𝛼𝑧 facing out of the image panel.
We use a customized likelihood for this global shadow direction as

L𝑑 (𝑫,𝑫)=
∑︁
𝑝

(−𝑫𝑝 ∗𝑫𝑝︸     ︷︷     ︸
cos

+𝜆𝑛 | |𝑫𝑝−
𝑫𝑝

| |𝑫𝑝 | |2
| |22︸                  ︷︷                  ︸

norm

) , (9)

where ∗ is dot product and 𝜆𝑛 is a penalizing weight. The “cos”
term is a cosine likelihood between the estimated direction and the
ground truth, and the “norm” term is a regulation to encourage the
confidence — low-intensity estimation will be amplified to a norm
unit scale. Note that (1) this tool is only a coarse recommendation of
the shadow propagation, and more specified effects (e.g., spot light,
rim shadow, etc.) can be achieved with the other brush tools; and (2)
this tool is fully automatic and does not require artists to learn any
technical knowledges, e.g., data structure for 3D space orientation,
screen-to-world space conversion, etc.

3.2 Data preparation and training schedule
Ideally, we may invite professional artists to manually draw a suf-
ficient number of line drawing and shadow pairs as the training
dataset so as to capture their perceptual designs and artistic under-
standings. Nonetheless, the highly expensive and time-consuming
artistic drawing process makes large-scale annotation impractical.
Another choice is to synthesize a training dataset using algorithms.
Although a synthetic dataset might be larger or more diverse than
real data, their shadow appearancemay not match the artists’ wishes
and demands. We propose a customized schedule method: we pre-
train our models with large-scale and diverse synthesized/extracted
data, and then fine-tune the models on high-quality real data drawn
by artists, to simultaneously ensure the robustness and artistic faith-
fulness.
Data from real artists.We provide 1670 shadow samples drawn
from actual artists (Fig. 4-(a)). Those data are from three resources:
(1) We manually pick high-quality samples from a previous line

(a) Data from real artists (1670 collected samples):

Quality: high Quantity: low

(b) Data from rendering engine (25,413 collected samples):

Quality: medium Quantity: medium

(c) Data from shadow extraction (291,951 collected samples):

Quality: medium Quantity: high
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Line art

Auto 
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©
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Fig. 4. Dataset preparation.We present a large-scale dataset with both
real data drawn by artists manually and synthesized data obtained from
rendering engines and shadow extraction algorithms.

drawing shadow dataset [Zheng et al. 2020]. (2) We search the key
word “line drawing and shadow pairs” in internet illustration plat-
forms Pixiv [pixiv.net 2007] and Danbooru [DanbooruCommunity
2018] to sample in-the-wild data pairs, and after that, artists are
invited to refine the shadows into usable data format for our dataset.
(3) We search the key word “line drawing” in Pixiv and Danbooru to
sample 10,000 line drawings. We then invite the 12 artists to select
their interested line drawings and choose their preferred shadow
directions. Afterwards, they draw the target shadows according
to their artistic decisions and perceptual understandings. In this
way, we collect 1670 high-quality shadow samples that captures the
perceptions and designs of artists.
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Line drawing Ours w/o edits User edits Ours Line drawing Ours w/o edits User edits Ours

Fig. 5. Examples of interactive shadow drawing. Zoom in to see details of the shadows and user edits. 30 more results are presented in the supplement.
The user scribbles are precisely one-pixel width and we dilated the scribbles for clearer presentation. Artworks used with artist permissions.

Data from rendering engine.Weuse non-photorealistic rendering
(NPR) techniques to obtain line art and shadow pairs. To be specific,
we search the key word “free” in Unity 3D Assets Store and download
471 random 3D prefabs. We import them to the rendering engine
Blender [Community 2018] andwrite a NPR script to generate 25,413
line art and shadow pairs at random shadow directions (Fig. 4-(b)).
Data from shadow extraction.We sample 300,000 random digital
paintings from Danbooru dataset [DanbooruCommunity 2018] and
Pixiv [pixiv.net 2007] (Fig. 4-(c)). We use auto inking method [Simo-
Serra et al. 2016] to extract line arts, and use intrinsic imaging
method [Bi et al. 2015] (enhanced with [Zhang et al. 2020a] and
[Carroll et al. 2011]) to decompose reflectance and illumination
maps. We then perform a shadow voting using OTSU algorithm
[Otsu 1979] to obtain the shadow, and use the Barron&Malik model
[Barron and Malik 2015] to estimate the shadow direction. After
that, we manually remove 8,049 pairs with obviously low quality,
and acquire the remaining 291,951 qualified pairs.
Training schedule. Our proposed training schedule consists of
two phases: (1) Firstly, we pre-train the models with the extracted
large-scale shadows for 20 epochs and with the rendered shadows
for 15 epochs. (2) Afterwards, as a fine-tuning, we train the models
with the high-quality shadows from real artists for 10 epochs. In this
way, we achieve a robust model that not only generalizes to diverse
inputs but also learns from real-artist data to produce shadows that
are faithful to the understanding and willingness of real artists.

4 EVALUATION

4.1 Experimental setting
Implementation details. Our framework is trained using the
Adam optimizer [Kingma and Ba 2014] with a learning rate of
lr = 10−5, 𝛽 = 0.5, at batch size 8. Training samples are randomly
cropped to be 256 × 256 pixels and augmented with random left-
and-right flipping. As the shadow model is fully convolutional, it
receives adjustable resolutions in inference.
Hyper-parameters. The proposed and recommended configura-
tion is 𝜆𝑎 = 1.0, 𝜅 = 0.1, and 𝜆𝑛 = 0.5.
Compared methods. We test several shadow generation methods
of (1) the generic model Pix2Pix [Isola et al. 2017] trained on our
dataset with the same training schedule as ours; (2) the typical data-
driven normal-based method DeepNormal [Hudon et al. 2018a] (offi-
cial implementation); (3) the interactive method Sketch2Normal [Su
et al. 2018] (official method trained with the same scribble shapes
as ours); (4) the state-of-the-art shadow generating method ShadeS-
ketch [Zheng et al. 2020] (official open-sourced codes); (5) our ap-
plication without user edits (in this case we input same shadow
directions as other methods when compared to them); and (6) our
interactive application.
Testing samples. The tested images are Pixiv [pixiv.net 2007] line
drawings and in-the-wild internet line arts. We make sure that all
tested images are unseen from the training dataset.
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Automatic Methods Interactive Methods

Input Pix2Pix DeepNormal ShadeSketch Ours User edits Sketch2Normal User edits Ours
line drawing [2017] (DN) [2018a] (SS) [2020] w/o edits of S2N [2018] (S2N) [2018] of ours (proposed)

Fig. 6. Comparisons to possible alternative methods. 15 more full-resolution comparisons are provided in the supplementary material. The user scribbles
are precisely one-pixel width and we dilated the scribbles for clearer presentation. Artworks used with artist permissions.

4.2 Qualitative results
Interactive editing.We present examples of interactive shadow
drawing in Fig. 5, and 30 additional results in the supplement. We
can see that the users can work with our tools to achieve various
shadow effects in diverse drawing topics, e.g., human, animal, plant,
robot, etc.
Comparison to previous methods.We present comparisons with
both the automatic methods [Hudon et al. 2018a; Isola et al. 2017;
Zheng et al. 2020] and the interactive method [Su et al. 2018] in
Fig. 6, and 15 additional comparisons in the supplementary material.
We can see that Pix2Pix [Isola et al. 2017] fails in achieving usable
results, DeepNormal [Hudon et al. 2018a] tends to output shadows
with severe distortions. The results of ShadeSketch [Zheng et al.
2020] is better than [Isola et al. 2017] and [Hudon et al. 2018a], but
it has difficulty in addressing detailed areas, e.g., the mouse legs and
the handrails for baskets (as marked in orange rectangles in Fig. 6).
Sketch2Normal [Su et al. 2018] yields low-quality shadows, despite
the adequately given user scribbles. Our approach, regardless of
whether to receive user edits or not, produces clean and practically
usable shadows.

4.3 User study
Participant. The user study involves 15 persons: 10 non-artist
amateurs and 5 professional artists. Each artist has at least two
years of digital painting experience.
Setup. We sample 52 unseen line drawings from Pixiv [pixiv.net
2007], and then assign each line drawing to 3 random users targeted
to 3 methods: a commercial tool (Adobe PhotoShop), our approach,
and the baseline interactive method [Su et al. 2018]. We also use 4
fully-automatic methods [Hudon et al. 2018a; Isola et al. 2017; Su
et al. 2018; Zheng et al. 2020] and the automatic mode of our method
to generate shadows for each image. We ensure that any image is
assigned to each user at most once to avoid users being trained for
specific instances.
User guideline.When drawing shadows interactively, we inform
the users that “your time consumption will be recorded and please
draw at your normal speed”. After they are finished, the users are
also shuffled to rank the shadows of automatic methods [Hudon
et al. 2018a; Isola et al. 2017; Zheng et al. 2020] and the automatic
outputs of ours.We ask users the question— “Which of the following
shadow do you prefer most to use in your daily digital painting?
Please rank according to your preference.”
Evaluation metric. We use the Time Consumption (TC) as speed
metric. We record the precise drawing minutes, and split the time
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(a) Input (b) W/o shadow (c) W/o shadow (d) W/o global (e) W/o balanced (f) W/o aniso- (g) W/o norm (h) Proposed
line drawing brush boundary brush shadow generator sampling 𝑓𝑏 (·) tropic penalty 𝜆𝑎 regulation 𝜆𝑛 full method

Fig. 7. Ablative study.We study the impact of each individual component within our framework by removing components one-by-one. The user scribbles are
precisely one-pixel width and we dilated the scribbles for clearer presentation. Artworks used with artist permissions.

Table 1. Time Consumption (TC). We compare the time consuming of a
typical commercial tool (Adobe PhotoShop) and ours. We visualize the time
consumption of 52 shadow drawing cases, e.g., in “ours” row and “𝑡 < 5”
col, the “51.92%” means that the time consumption of our method is less
than 5 minutes in 51.92% cases.

Time 𝑡 (minutes) 𝑡 < 5 5 ≤ 𝑡 < 10 10 ≤ 𝑡 < 15 15 ≤ 𝑡 < 20 𝑡 ≥ 20

Commercial tool 0.00% 3.84% 28.84% 53.84% 13.46%
Ours 51.92% 46.15% 1.92% 0.00% 0.00%

consumption into intervals of five minutes. We also use the Average
Human Ranking (AHR) as preference metric. For each line drawing,
the users rank the results of the 5 methods from 1 to 5 (lower is
better). Afterwards, we calculate the average ranking obtained by
each method.
Time consumption analysis. The time data are reported in Ta-
ble 1. We can see that in a dominant majority of cases, our method
consumes less than 10 minutes, while in most cases the commercial
tool (Adobe PhotoShop) consumes more than 15 minutes. Besides,
we report that the average time consuming of ours is 5.35 minutes
while the commercial tool is 16.58 minutes, indicating a 3.1× speed
up. See also the supplementary material for more detailed data.
Result. The user preferences are reported in Table 2. We have
several interesting discoveries: (1) Our framework, even in automatic
mode without any user edits, outperforms the secondly best method

Table 2. Average Human Ranking (AHR).We present the ranking results
of the user study. The arrow (↓) indicates that lower is better. Top 1 (or 2)
score is marked in blue (or red). “*” indicates automatic processing without
user hints.

Method Pix2Pix [2017] Hudon [2018a] Su [2018]* Zheng [2020] Ours*

AHR ↓ 4.53 ± 0.60 2.81 ± 0.76 4.19 ± 0.96 2.44 ± 0.63 1.01 ± 0.13

by a large margin of 1.43/5. (2) Zheng’s approach [Zheng et al. 2020]
reports the secondly best score. (3) The two normal-based methods
[Hudon et al. 2018a; Su et al. 2018] reports similar perceptual quality,
with [Hudon et al. 2018a] slightly better than [Su et al. 2018], despite
that [Su et al. 2018] receives interactive edits while [Hudon et al.
2018a] is automatic.

4.4 Ablative study
As shown in Fig. 7, our ablative study consists of the following
experiments: (1) We remove the shadow brush and train our frame-
work without red and blue scribbles. We can see that, in absence of
the shadow brush, the shadow boundary brush cannot control the
shadow locations by itself, resulting in many undesired shadows in
the outputs (Fig. 7-(b)). (2) We remove the shadow boundary brush
and train our framework without green scribbles. We can see that,
without the help of shadow boundary brush, the shadow shape is
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(a) Input (b) Uniform 𝑓 ′
𝑏
(·) (c) Proposed 𝑓𝑏 (·)

Fig. 8. Influence of different sampling distribution for 𝑓𝑏 .We compare
the proposed bivariate normal distribution sampling and a common alter-
native uniform random sampling. Artwork used with artist permission.

(a) Input (b) 𝜆𝑎 = 0.05 (c) 𝜆𝑎 = 1.0

Fig. 9. Influence of the anisotropic penalty weight 𝜆𝑎 . We visualize
the outputs of our method with different anisotropic penalty weight 𝜆𝑎 .
Artwork used with artist permission.

(a) Input (b) 𝜆𝑛 = 0.01 (c) 𝜆𝑛 = 0.5

Fig. 10. Influence of the shadow direction norm weight 𝜆𝑛 .We com-
pare the output shadows from models trained with different norm weight
𝜆𝑛 . Artwork used with artist permission.

out of control and users cannot implement their wanted shadow
appearances (Fig. 7-(c)). (3) We remove the global shadow generator
and train the shadow branch of our neural architecture without
global shadow direction embedding. We can see that the global and
local shadows becomes inconsistent and distorted (Fig. 7-(d)). (4)
We train without the bivariate normal distribution sampling 𝑓𝑏 , and
instead, we simply sample random pixels as the starting position of
training scribbles. We can see that the resulting shadows become
severely unbalanced and defective (Fig. 7-(e)). (5) If trained without
the anisotropic penalty 𝜆𝑎 , the neural networks fail in achieving
sharp and smooth shadow boundaries, resulting in noisy outputs
(Fig. 7-(f)). (6) If trained without the shadow direction norm regula-
tion 𝜆𝑛 , the neural networks fail in recognizing appropriate shadow

Fig. 11. Robustness to complicated line drawing. We present a chal-
lenging case where the input line drawing is complicated and detailed. The
user scribbles are precisely one-pixel width and we dilated the scribbles for
clearer presentation. Artwork used with artist permission.

(a) Input (b) User edit (c) Ours

Fig. 12. Generalization to other art form.We filter the left artwork to get
the middle sketch and the user use our tools to achieve the right blended
result. The user scribbles are precisely one-pixel width and we dilated the
scribbles for clearer presentation. Jardin de Paris, public domain.

directions, and tends to output collapsed shadows surrounding in-
put lines (Fig. 7-(g)). (7) The full framework suppresses these types
of artifacts and achieves a satisfactory balance over the shadow
location, shape, and appearance (Fig. 7-(h)).
Influence of hyper-parameters.We further study the influence
of the bivariate normal distribution sampling 𝑓𝑏 by replacing it
with a common uniform distribution 𝑓 ′

𝑏
(𝑛𝑖 , 𝑛𝑜 ) → 𝑛𝑖 , 𝑛𝑜 ∼ 𝑈 (0, 16).

We can see in Fig. 8 that such uniform sampling causes shadow
distortions while our customized sampling bypasses this artifact.
We study different weights for the anisotropic 𝜆𝑎 and the norm 𝜆𝑤
in Fig. 9 and 10. We can see that a too small 𝜆𝑎 causes boundary
distortions and a too small 𝜆𝑛 causes shadow direction defects.
Robustness and generalization.We showcase the robustness in
Fig. 11 with a challenging complicated line drawing. We also present
a case where our framework is generalized to another art form in
Fig. 12. See also the supplementary material for results with more
diverse contents and topics.
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5 CONCLUSION
We propose a digital painting application to generate shadows on
line drawings, with three tools of the shadow brush, shadow bound-
ary brush, and global shadow generator. We train hierarchical neural
networks with a collected large-scale dataset of both synthesized
data and real data drawn by artists. User study shows that our tools
can speed up the shadow drawing process and can achieve practi-
cally usable shadows for the daily work of artists. Our dataset will
be made publicly available to facilitate related techniques.
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