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Fig. 1. Given a canvas image uploaded by user, this framework can generate states in the past and future of the drawing processes. Users can click “past” or
“future” to specify the direction for the generation. They can also select one or multiple samples as inputs for generating past or future states. In this example,
the central image is uploaded by the user, while all others are generated by this framework.

We present PaintsAlter, a framework to generate past and future processes
for drawing process videos. Given a canvas image uploaded by a user, the
framework can generate both preceding and succeeding states of the draw-
ing process, and the generated states can be reused as inputs for further
state generation. We observe that the user queries typically have one-to-one
or many-to-many states, and in many cases, involve non-contiguous states.
This necessitates a backend that solves a set-to-set problem with arbitrary

Authors’ addresses: Lvmin Zhang, lvmin@cs.stanford.edu, Stanford University, USA;
Chuan Yan, cyan3@gmu.edu, Stanford University, USA; Yuwei Guo, guoyw.nju@
gmail.com, The Chinese University of Hong Kong, Hong Kong, China; Jinbo Xing,
jbxing@cse.cuhk.edu.hk, The Chinese University of Hong Kong, Hong Kong, China;
Maneesh Agrawala, maneesh@cs.stanford.edu, Stanford University, USA.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
0730-0301/2025/8-ART $15.00
https://doi.org/10.1145/3731160

combinations of past or future states. To this end, we repurpose video dif-
fusion models to learn the set-to-set mapping with pretrained video priors.
We implement the system with strong diffusion transformer backbones (e.g.,
CogVideoX and LTXVideo) and high-quality data processing (e.g., sampling
short shots from long videos of real drawing records). Experiments show that
the generated states are diverse in drawing contexts and resemble human
drawing processes. This capability may aid artists in visualizing potential
outcomes, generating creative inspirations, or refining existing workflows.
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1 INTRODUCTION
Capturing, visualizing, and manipulating the editing process is fun-
damental and indispensable in digital creation and computer-aided
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Fig. 2. Various type of queries. Different types of user queries may be
requested by the frontend in various use cases. Either source or query can be
one or multiple frames, and those frames can be non-contiguous in certain
cases. For instance, querying a sketch from a finished drawing is a typical
one-to-one non-contiguous query.

design. Decades of academic research and software development
have contributed to various forms of process editing, like reproduc-
ing user operations (e.g., undo/redo), recording rasterized canvases
(e.g., MS Paint), scriptable marcos (e.g., MS Word’s macro), visualiz-
ing processes (e.g., Adobe Photoshop’s history panel), parameterized
history editing [Berthouzoz et al. 2011; Chen et al. 2016; Denning
and Pellacini 2013; Denning et al. 2015; Grabler et al. 2009; Salvati
et al. 2015], etc. Recording user edits as videos is another essential
and versatile way for creators to explore process history, exchange
ideas, share experiences, and study the details of decision making
and design alternatives. Artists often consider design alternatives
as an integral part of their process, e.g., when creating a drawing,
they may revisit earlier stages, re-imagine or redraw parts of their
works to try different possible designs.

In the era of large generative models, can we further facilitate
the process manipulation with large-scale pretrained models? Can
we build a system capable of generating both the past and future
of drawing process videos? Such a framework would not only al-
low users to explore possible outcomes but also inspire creative
directions by visualizing alternative processes. This would provide
new aspects of interactivity and aspiration, enabling creators to
directly see the evolution of their work in reversive alternatives, re-
imagining earlier stages, or projecting potential future paths. From
this perspective, how can we model the complicated relationships
and interactions between different frames of a drawing process?
To answer these questions, we first observe that a system for

generating past and future frames would need to respond to a range
of queries, as shown in Fig. 2. To be specific, the queries may in-
volve one-to-one or many-to-many mappings of drawing frames.
For instance, users might wish to reconstruct the sketch from a
finished artwork or visualize multiple future frames based on a
partially completed piece. To design a smooth and efficient fron-
tend, these backend queries may feature non-contiguous sections
between frames or even more interwinded interactions. This com-
plexity necessitates a robust backend capable of handling diverse
frame combinations and dynamic frame structures while maintain-
ing global coherence and contextual accuracy.

We propose to repurpose video diffusion models to learn such set-
to-set mappings with pretrained video priors. Firstly, we introduce a

partitioned 3D VAE, which allows for encoding contiguous and non-
contiguous frame sequences while maintaining temporal coherence
in the resulting latents. Secondly, we embed the operation steps
(i.e., the indices of the frames) into the temporal dimension of the
neural hidden frames using causal projection layers, ensuring that
the temporal layers match the step indices exactly. In this way,
the learning can be stablized and the projection becomes robust in
handling both contiguous and non-contiguous frame sections.

To this end, we train with strong diffusion transformer backbones
(CogVideoX and LTXVideo) and implement high-quality data pro-
cessing pipelines. Our data processing includes sampling short clips
from long videos of real drawing records, preserving both contex-
tual richness and variability. These strong backbones, paired with
well-curated datasets, allow the framework to process diverse query
types with robustness and coherency.
Experiments show that the framework handles diverse query

types and combinations of frames, spanning a wide range of input
styles and contexts, and generates outputs that resemble human
drawing processes. These capabilities enable creative applications
such as visualizing alternative process directions, exploring revi-
sions and inspirations, or even generating new creating paths. Ad-
ditionally, we provide ablative experiments to analyze the influence
of each component.

In summary, (1) we motivate the problem of generating past and
future frames of the drawing process and discuss the types of queries
this system must handle; (2) we present the framework utilizing
video diffusion models, enhanced with partitioned 3D VAEs and
causal projection mechanisms, to address diverse query types effec-
tively; (3) we provide practical applications and user-friendly inter-
faces for leveraging the framework in creative workflows, enabling
users to explore alternative outcomes and visualize the generated
evolutions of their work; (4) we perform extensive experiments,
including ablative studies, to demonstrate the efficacy of each com-
ponent and highlight the framework’s robustness across various
input styles and contexts; and (5) we explore additional applica-
tions, e.g., creating unique special effects by generating different
past/future processes from same input sequences.

2 RELATED WORK

2.1 Human Drawing Process
Human drawing is not just a sequence of strokes but a cognitive
process involving observation, interpretation, and iteration. Early
research explored human observation and perception, progress-
ing to stroke-based rendering methods [Hertzmann 2003]. Stroke
techniques for texture and tone emulation were also introduced [Sal-
isbury et al. 1994]. Abstract image representations decomposing vi-
sual elements were proposed [Haeberli 1990]. Curved brush strokes
of varying sizes enabled painterly rendering [Hertzmann 1998],
while expressive brushwork mimicking impressionist art was ad-
dressed [Litwinowicz 1997].
Research has increasingly focused on mimicking the human

painting process. Time-lapse videos capture artists’ step-by-step
approaches [Tan et al. 2015], while deep learning models replicate
human-like strategies, such as generating vector path sequences
based on images [Mo et al. 2021]. Models like SketchRNN [Ha
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and Eck 2018] and BézierSketch represent scalable, high-resolution
stroke sequences [Das et al. 2020]. Neural painters optimize brush-
strokes [Nakano 2019], and reinforcement learning models decom-
pose images into strategic strokes [Huang et al. 2019]. Paint Trans-
former predicts strokes collectively, enhancing efficiency [Liu et al.
2021]. Stylized Neural Painting recreates global compositions with
realistic textures [Zou et al. 2021], while IntelliPaint replicates
human-like layering and semantic guidance [Singh et al. 2022].
Videomodels simulate querying the forward painting process through
text description [Song et al. 2024] or the iterative artistic decisions
based on a finished painting [Chen et al. 2024b; Zhao et al. 2020].

2.2 Digital Painting and Image Editing
Interactive painting methods now empower artists by combining
human creativity with computational capabilities. Early methods ad-
dressed tasks like sketch cleanup, inking [Simo-Serra et al. 2018a,b],
and grayscale colorization [Zhang et al. 2018, 2017]. With diffusion
models, advanced tools have emerged for refining sketches into real-
istic images. Sketch-guided diffusionmodels provide control over im-
age generation [Voynov et al. 2023], lightweight mapping networks
enhance sketch realism [Roy et al. 2025], and abstraction-aware
frameworks translating simple sketches into precise outputs [Ko-
ley et al. 2024]. EdgeGAN enables scene-level image creation from
sketches [Gao et al. 2020], while spatially-adaptive normalization
maintains photorealistic synthesis and semantic alignment [Park
et al. 2019]. Additionally, multimodal conditioned image editing
[Zhang et al. 2023] has enabled even greater flexibility in artistic
expression and creative workflows. These methods can be grouped
into various tasks: Conditioned content generation aligns images
with text descriptions, sketches, or semantic maps [Sca 2024; Brooks
et al. 2023; Xu et al. 2024]. Synthesizes photorealistic edits of coarsely
modifications [Alzayer et al. 2024; Nitzan et al. 2024]. Transforming
sketch-based editing into photorealistic images [Park et al. 2019;
Qu et al. 2024]. Utilizing Diffusion-based approaches for image-to-
image translation and refinement [Chen et al. 2024a; Pandey et al.
2024; Saharia et al. 2022]. Other approaches include realistic and
exemplar-driven editing [Kawar et al. 2023; Yang et al. 2023; Zhang
et al. 2018], user-guided interactive tools for intuitive modifications
[Pan et al. 2023; Shi et al. 2024b], face and portrait-specific genera-
tion from rough inputs [Chen et al. 2020], and image harmonization
techniques to ensure style and lighting consistency [Lu et al. 2023].

2.3 Video Diffusion and Generation
Video generation, transformed by diffusion models, has advanced
from methods like VideoGAN [Vondrick et al. 2016] and video-to-
video translation [Wang et al. 2018], which synthesized short clips
using noise or segmentation masks, to video diffusion models [Ho
et al. 2022] that achieve high-quality, temporally coherent outputs.
Innovations such as Latent Diffusion Models [Rombach et al. 2022],
text-to-video pipelines [Singer et al. 2023], and zero-shot animation
with AnimateDiff [Guo et al. 2024] and ToonCrafter [Xing et al.
2024] adapt static image models for dynamic sequences. Classifier-
free guidance [Ho and Salimans 2022] enables controllable video
creation, while latent-space approaches [Blattmann et al. 2023] im-
prove memory efficiency. Recent work focuses on scalability and

motion consistency: spatiotemporal transformers [Menapace et al.
2024], unified editing frameworks [Bai et al. 2024], spatial-temporal
diffusion for detailed motion [Bar-Tal et al. 2024], and explicit mo-
tion modeling [Shi et al. 2024a]. Additionally, PyramidFlow [Jin et al.
2024] introduces a pyramidal flow matching method that reinter-
prets the denoising trajectory as a series of pyramid stages, where
only the final stage operates at the full resolution, so as to reduce
computational costs. Tools like VideoCrafter [Chen et al. 2024c]
leverage refined pretraining to achieve high-quality outputs with
fewer constraints. Recent advancements in video generation have
yielded open-source models [HaCohen et al. 2024; Weijie Kong and
Jie Jiang 2024; Yang et al. 2024] rivaling closed-source counterparts.

3 METHOD
We build a framework that can generate the past and future draw-
ing processes for digital paintings. Section 3.1 introduces the frame
representation framework, defining how each step in a drawing
is treated as an operation frame. Section 3.2 details the adaptation
of video diffusion models, including strategies for handling tempo-
ral encoding and leveraging latent space compression. Section 3.3
presents the use of additional image diffusion models for efficient
single-frame queries. Finally, Section 3.4 discusses implementation
details and inference optimizations.

3.1 Framed Representation of Drawing Process
Considering a digital painting process with 𝑠max ∈ Z drawing steps,
we denote the drawing canvas at the step 𝑠 ∈ [0, 𝑠max] as an RGB
image 𝑿𝑠 ∈ Rℎ×𝑤×3 with width𝑤 and height ℎ. Intuitively, 𝑿0 is a
pure blank image, and 𝑿𝑠max is the finished painting. In this paper,
we call each step 𝑠 an operation step and each canvas 𝑿𝑠 a frame.

Aligning operation steps. An important representation in this
framework is the use of a fixed number of max operation steps
𝑠max (we use 𝑠max = 1000 by default). This ensures that, from the
perspective of Positional Encoding (PE), the model can always be
conditioned on a determined PE vector for all finished paintings.
If the actual number of operation steps is smaller than 1000, we
sample nearest neighbors; if the actual steps exceed 1000, we sample
1000 steps with randomized step skips as data augmentations (see
also implementation details in Sec. 3.4).

Objective mapping. We establish backendmodels that can respond
to different types of queries, e.g., estimating one or many past/future
frames from one or many existing frames. For all possible one-to-
one or many-to-many queries, we can always formulate a set-to-set
mapping F as

F : {𝑿𝑠1 , . . . ,𝑿𝑠𝑛︸         ︷︷         ︸
source frames

, 𝑠1, . . . , 𝑠𝑛︸    ︷︷    ︸
source steps

, 𝑞1, . . . , 𝑞𝑚︸      ︷︷      ︸
queried steps

} ↦→ {𝑿𝑞1 , . . . ,𝑿𝑞𝑚︸          ︷︷          ︸
queried frames

}. (1)

where we aim to estimate the queried frames {𝑿𝑞1 , . . . ,𝑿𝑞𝑚 } corre-
sponding to the queried steps {𝑞1, . . . , 𝑞𝑚} based on the given source
frames {𝑿𝑠1 , . . . ,𝑿𝑠𝑛 } and their respective source steps {𝑠1, . . . , 𝑠𝑛}.
To support various use cases, the source/queried steps (and the
numbers𝑚,𝑛) are arbitrary.
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Fig. 3. Framework overview. We present an overview of the training framework. The diffusion transformer receive concatenated latents from sources and
queries and only denoise the query part. The operation steps are embedded to the transformer with causal transforms to match the latent temporal dimension.
Note that both source frames and query can be either multiple frames or one single frames.

3.2 Repurposing Video Diffusion Models
Preliminaries. Video diffusion models generate videos by learn-

ing to denoise data distribution (often in latent space) through a
forward pass to gradually add noise to data and a reverse pass to
reconstruct the data. We here discuss latest architectures of Dif-
fusion Transformers (DiTs) and flow match scheduling, whereas
other architectures can be adapted with similar formulations. Typi-
cal base models in this category are CogVideoX [Yang et al. 2024],
HunyuanVideo [Weijie Kong and Jie Jiang 2024], and LTXVideo
(LTXV) [HaCohen et al. 2024]. Rectified-flow models map noisy
latents

𝒛𝑡𝑖 = (1 − 𝑡𝑖 )𝒛0 + 𝑡𝑖𝝐, 𝝐 ∼ N
(
0, I

)
, (2)

to clean latents, 𝒛0 where 𝑡𝑖 ∈ (0, 1] is the diffusion timestep. Most
recent video diffusion models use latent diffusion with VAEs to
compress data with

𝒛0 = E(𝑿 ), �̂� = D
(
𝒛0
)
, (3)

where E(·) and D(·) are encoder and decoder of the VAE, re-
spectively, e.g. with LTXV, this process compress image sequence
𝑿 ∈ R𝑓 ×ℎ×𝑤×3 into 𝒛0 = E(𝑿 ) ∈ R

𝑓

8 ×
ℎ
32 ×

𝑤
32 ×128 with 𝑓 , ℎ,𝑤 being

frame count, width, and height. To learn the DiT generator 𝑮𝜃 (·),
the learning objective is

E𝒛0,𝒄,𝑡𝑖∼L(0,1),𝝐∼N(0,1)





(𝝐 − 𝒛0) − 𝑮𝜃
(
𝒛𝑡𝑖 , 𝑡𝑖 , 𝒄

)



2
2
, (4)

where 𝒄 is a set of conditions like text prompts, and 𝑡 ∼ L(0, 1)
is the shifted logit-normal distribution [Esser et al. 2024] for flow
match timestep sampling.

Partitioned 3D VAE. We encode a set of drawing frames 𝑿𝑠1...𝑛
with the pretrained VAE encoder E(·). Video diffusion frameworks
typically use 3D VAEs with causal convolutions to encode multiple
frames together. This encoding allows for temporal coherency in
reconstructing multiple frames, but would introduce unnecessary
ghosting artifacts when encoding non-contiguous frames. When
frame indices 𝑠1...𝑛 contain non-contiguous sub-sequences, we pro-
pose to partition them into contiguous sections, e.g.,

past future
5 6 ... ...100 101 500 ......

s1 s2 s3 s4 s5 ...

Ω1 Ω2 Ω3 ...

and then encode them independently. Considering Ω1...𝑘 represent-
ing the partitioned contiguous sub-sequences of frame indices, each
section 𝑿Ω𝑖

can be encoded into the latent E(𝑿Ω𝑖
), and the final

encoded result are concatenated

𝒛 =
[
E(𝑿Ω1 ) . . . E(𝑿Ω𝑘

)
]

, (5)

and in this process, one special case is that a section Ω𝑖 contains
only one frame (or less than the minimal frame number specified by
the VAE causal convolutions). In this case the inputs are padded by
the causal convolution, e.g. with LTXV, 𝑛 frames are padded with
duplicated prefixes and then encoded to ⌊1 + 𝑛−1

8 ⌋ latents.

Conditioning operations steps. Considering that each drawing
frame 𝑿𝑠 is paired with a operation step index 𝑠 , when multiple
frames 𝑿𝑠1...𝑛 are encoded by 3D VAE into a latent cube, the indices
𝑠1...𝑛 need to be projected to match the latent temporal dimension.
As shown in Fig. 4, we propose to project the operation step indices
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Fig. 4. Causal padding for operations step conditioning. We illustrate
the 2D convolution layers for projecting the step feature vectors to the
latent shape that matches the latent temporal dimension. For layers with
any kernel size 𝑘𝑠 ∈ 𝑍 , the causal padding always pad the first element
𝑘𝑠−1 times. Nomatter how large the number𝑛 is, the first vector always only
encode features from the first input. In this example, we use 256 frequencies
for positional encoding, and 𝑐 means hidden state channels of one layer.

with a set of causal 2D convolution layers that are padded with
exactly the same configurations with the 3D VAE, e.g. with LTXV, 𝑛
indices will be encoded into ⌊1 + 𝑛−1

8 ⌋ vectors to match the latents
(The layers in Fig. 4 will compress latent temporal dimension by 2,
and we repeat this 3 times). The newly initialized projection layers
are then gated by a zero-initialized linear layer, and added to the
timestep embedding layers in DiTs transformer models.

Source and query frames. We condition the model on source (ex-
isting) frames and generate queried (unknown) frames. To achieve
this conditioning, we always view source and query frames as non-
contiguous sections in the aforementioned partitioned VAE encoder.
In other words, source and query frames always have indepen-
dent latent temporal entries. For instance, considering 𝑛 contiguous
source frames and𝑚 contiguous query frames, we always encode
them into ⌊1 + 𝑛−1

8 ⌋ + ⌊1 + 𝑚−1
8 ⌋ latents (i.e., not ⌊1 + 𝑛+𝑚−1

8 ⌋ even
if those query frames are next to source frames). In this way, we can
set the diffusion timestep (diffusion noise level) 𝑡𝑖 to zero for the
source frames during training, so that the diffusion model will only
denoise the queried frames and use the source frames as references.
We denote this transform by masking M(𝑡𝑖 ) to zero-out the source
frame part in diffusion time steps 𝑡𝑖 .

Learning objective. We have the joint objective in form of Eq. 4 as

E𝒛,𝒄,𝑠,𝑡𝑖∼L(0,1),𝝐∼N(0,1)





(𝝐 − 𝒛) − 𝑮𝜃
(
𝒛M(𝑡𝑖 ) ,M(𝑡𝑖 ), 𝒄, 𝑠

)



2
2
, (6)

with 𝒄 being model-specific extra conditions, e.g. text prompts for
LTXV, CogVid, etc. The clean latents 𝒛 are encoded by the partitioned
3D VAE with Eq. 5.

3.3 Additional Model Variants and Efficient Inference
Though the video diffusion model itself can already process all types
of user queries, the experience of many typical queries can be im-
proved by training additional model variants to build practical tools

and responsive interfaces. For instance, a special yet highly common
type of user input is a case where both the source and query only
specify a single frame, e.g., directly querying the finished drawing
from a sketch, or querying a rough sketch of a finished drawing,
etc. One can achieve higher visual quality and reduced computation
overheads by training a dedicated image diffusion model. Building
more model variants also allows for wider visual effects, e.g., to ben-
efit from community LoRAs for specific models, etc. The advantages
of image-based diffusion models are also discussed in related works
like InversePainting [Chen et al. 2024b].

Additional image diffusion variant. To be specific, we train an
independent image diffusion model SDXL [Podell et al. 2023] for
queries that have a single source and queried frame. We add 4
zero-initialized channels to SDXL input convolution projection to
receive the latents of source𝑿𝑠 , and extend the timestep embedding
projection to receive two extra scalars: the source step 𝑠 and query
step 𝑞. The model is then trained using SDXL’s diffusion objective.

Efficient inference scheduling. With multiple available models, the
inference efficiency can be tweaked on different deployment devices.
We provide a default scheduling: (1) if both the source and query are
single frames, respond with the additional image diffusion model; (2)
if the source is a single frame and the query is a large enough set of
frames (> 500), we first use the additional image model to generate
one intermediate frame for every interval of 200 steps, and then use
the video diffusion model to generate the remaining frames in every
interval, with the frames from the image diffusion model as extra
inputs; (3) for all remaining types of user queries, only respond with
the video diffusion model. The performance differences between
model variants will be discussed in ablation experiments.

3.4 Data and Implementation Details
Data preparation. We start with a progressive collection of long

videos recording the drawing processes. These videos were pro-
cessed using a pipeline to sample a much larger set of video clips,
with durations aligned to the context length supported by pretrained
video models. The data collection happened during winter 2018 to
autumn 2020. We reached out to artists one-by-one and obtained
consents from about 19 artists. At the time of collection, more than
half of the participants were students enrolled in an art school class,
others were professional artists with careers related to art, and the
occupations of the remaining participants were unknown. Among
the students, more than half were highly skilled and capable of
independently creating commercial artworks, while the remaining
students were beginners, proficient only in sketching or replicating
existing works. The drawing process videos were recorded using
various software. In total, we collected many long videos, with each
video lasting for hours. The content distribution covers diverse sub-
jects including humans (various ages and genders), non-humans
(animals, robots, etc.), scenes (outdoor, indoor), plants, toys, and
fantasy elements. Stylistically, the majority comes from commercial
digital paintings (concept art, promotional illustrations, etc.) with
other styles like watercolor, doodle, surrealism, etc. We detected
abrupt changes in those long videos with LTX’s criteria [HaCohen
et al. 2024] to obtain shots, and then filtered shots with insignificant
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Fig. 5. Examples of user explorations.We show that users can upload canvas images, query past or future frames of the drawing process. The images
marked with “upload” are user inputs, while all others are outputs. Images in grey rectangle are generated in one same inference. Model input prompts are
captioned by WD14 tagger from input images.

changes. We view 145 frames as the default context length number.
For shots longer than 145 frames, we use a randomized step skip —
we separate the shot into 145 intervals and randomly sample one
frame from each interval. The randomized step skip sampling is
performed at most 32 times for each shot longer than 145 frames.
In this way, each shot becomes a video clip sample aligned with the
video models’ context length. In total, we obtained the final dataset
of 20k video clips.

Training Details. We use the Adafactor [Shazeer and Stern 2018]
optimizer with a learning rate of 1e-5 to train the diffusion trans-
formers in bf16 precision. We train two video diffusion models with
LTXVideo and CogVideoX 1.5. We also train an additional image
model with SDXL (Sec. 3.3). The training devices are 8x H100 80G.
The LTXVideo is trained for about 4 days. The SDXL image model
is trained for about 3 days. The CogVideoX 1.5 model is trained for
about 9 days. We modify the context length of CogVideoX 1.5 to 145
frames. For LTXVideo and CogVideoX, we use buckets of 512px res-
olution. For SDXL image training, we use 1024px resolution buckets.
To maximize the batch size, we always enable diffusers’ gradient
check-pointing in all transformer blocks. To stabilize training, we
set max gradient clip norm to 0.5. We do not use any EMA weights.
Unless otherwise mentioned, for all inference and training, we al-
ways use WD14 tagger [SmilingWolf 2022] to get prompts from the
input frame image with the largest step index.

4 EXPERIMENTS

4.1 Qualitative Results
Interactive exploration. As shown in Fig. 5, our method allows

users to upload canvas images and explore the drawing process by
moving forward or backward through different steps. This explo-
ration results in various intermediate canvases. When users find a
canvas that aligns with their vision, they can continue generating

Table 1. Quantitative tests.We test the reconstruction metrics using dif-
ferent methods and our ablative architectures. Video methods are measured
with mean metrics over all frames, while image models are measured as the
mean value of all images.

Method PSNR ↑ SSIM ↑ LPIPS ↓
[Zhao et al. 2020] 12.27 0.4847 0.6851
[Song et al. 2024] 13.52 0.4901 0.6143

Ours (LTXVideo) 16.31 0.6510 0.4259
Ours (CogVideo) 17.04 0.6712 0.4022
Ours (image model, SDXL) 15.98 0.5995 0.4515

steps forward or backward to further refine or visualize alternative
outcomes. The intermediate canvases generated during this process
can also be used for other creative purposes.

Generating drawing processes. As shown in Fig. 6, our method
can accept one or multiple user-input canvas images and generate
frames representing either the past, future, or intermediate states
of the drawing process. We also observe that our method gener-
alizes well across diverse content types, including plants, animals,
landscapes, portraits, and food. This versatility demonstrates the
robustness and flexibility of the framework in handling a wide range
of artistic subjects.

Generating multiple drawing processes. As shown in Fig. 7, our
method can generate different drawing sequences from the same
user input using various random seeds. This allows for the creation
of multiple possible outcomes, each with unique artistic decisions.
For example, as illustrated in the first row, a sketch of an animal can
evolve into either a rabbit or a dog, depending on the input prompt.
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5% (s = 5) 100% (s = 1000)90% (s = 900)75% (s = 750)60% (s = 600)40% (s = 400)20% (s = 200)

Input

Fig. 6. Qualitative results of process generation with single random seed. Images in red rectangles are inputs while all others are outputs. The second,
forth, sixth rows uses prompts “masterpiece, a pot of flower in room”, “masterpiece, a portrait of a handsome man”, “masterpiece, best quality, 1girl, shirt,
outdoor”. All other rows uses WD14 tagger prompts.
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40% (s = 400)20% (s = 200)5% (s = 5)

Input

100% (s = 1000)90% (s = 900)75% (s = 750)60% (s = 600)

Fig. 7. Qualitative results of process generation with multiple random seeds. Images in red rectangles are inputs while all others are outputs. The first
and second rows uses prompts “masterpiece, a artwork of a bunny, outdoor”, “masterpiece, a artwork of a dog, outdoor”. All other rows uses WD14 tagger
prompts.

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.



Generating Past and Future in Digital Painting Processes • 9

Table 2. User Study. We conduct user study with two objectives: to study
which approach produces results with highest quality, and to study which
approach is most practical for editing, offering better responsiveness (e.g.,
faster speed). Previous methods are not involved in responsiveness test since
they are not interactive applications. Numbers are mean preference rate
with best in bold.

Candidate Quality ↑ Responsiveness ↑
[Zhao et al. 2020] 1.20±0.0% /
[Song et al. 2024] 3.61±1.21% /

Ours (LTXVideo) 18.07±4.3% 27.49±9.7%
Ours (CogVideo) 20.48±5.2% 8.46±6.5%
Ours (LTXVideo + image model) 26.51±6.1% 47.43±9.1%
Ours (CogVideo + image model) 30.12±5.8% 16.62±5.2%

4.2 Visual Comparison
As shown in Fig. 8, we present a comparison between our approach
and previous methods, including ProcessPainter [Song et al. 2024]
and InversePainting [Chen et al. 2024b]. Due to the lighter base
models employed by ProcessPainter, it struggles to fit significant
dynamic changes, such as transitions between sketching, outlining,
and coloring stages. On the other hand, InversePainting models
the drawing process as a segmentation-like task, which makes it
unsuitable for handling drawing sequences that involves sketching
behaviors. Our approach based on stronger foundational models
and trained on high-quality aligned data, generates high-quality
frames and coherent drawing processes.

4.3 Quantitative Results
We evaluate our method on a held-out 5% subset of the training data,
which the model has not seen during the training. We test different
approaches, including three of our model variants and two of prior
methods [Song et al. 2024; Zhao et al. 2020]. Quantitative metrics
such as PSNR, SSIM, and LPIPS are used for evaluation, as shown in
Table 1. Our method, particularly when using the CogVideo back-
bone, achieves the best results across all three metrics. We also test
alternative configurations of our model, such as using LTXVideo
as the base model and a standalone image diffusion model. These
variants also outperform the prior methods in terms of reconstruc-
tion quality. It is worth noting that InversePainting [Chen et al.
2024b] is excluded from this comparison due to its reliance on a
segmentation-based methodology, which is incompatible with our
dataset.

4.4 User Study
We conducted a user study to evaluate both the output quality and
the practicality of our method. Specifically, we compared various
configurations of our framework against two prior methods [Song
et al. 2024; Zhao et al. 2020]. Due to the significant structural and
output differences of InversePainting [Chen et al. 2024b], it was
excluded in the evaluation.

Setup. We selected 50 in-the-wild digital drawings that were un-
seen by the model during training. Participants were invited to

Ours:

InversePainting:

ProcessPainter:

Input 20%50%80% 5%

Fig. 8. Difference to previous methods. We present the difference be-
tween our approach and previous methods: ProcessPainter [Song et al. 2024]
and InversePainting [Chen et al. 2024b]. Note that ProcessPainter suggests
finetuning the model on target datasets, and we conducted the finetune on
our same dataset.

modify these drawings using our framework to create 50 corre-
sponding sequences of drawing processes. In addition to evaluating
the generated sequences, we collected feedback on the usability of
the different tools. Each participant used every configuration of our
method at least once. To ensure fairness, prior methods were applied
to the same input data after the initial user feedback collection for
comparison.

Participants. A total of 13 individuals participated in the study,
comprising one student, eight crowd-sourced workers recruited
from online platforms, and four experienced associate artists with
prior drawing expertise.
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Frame A
(end of prv. 

section)

Recon. B
(proposed)

Recon. B
(w/o partitioned 

VAE)

Frame B
(start of next 

section)

Fig. 9. Influence of Partitioned VAE.We show two connected sections
with non-contiguous frames and the VAE reconstruction of second frame.
Without the Partitioned VAE design, the second frame will have blurred
reconstruction caused by latent temporal compression.

Evaluating Quality. To assess the output quality, participants were
asked to identify the drawing sequence they considered to have the
highest quality for each task. The method with the highest average
preference rate was considered the best in terms of quality.

Evaluating Responsiveness. Responsiveness was evaluated as an
advanced metric of system speed and interactivity. Beyond measur-
ing absolute processing time for generating frames, responsiveness
accounts for the user’s experience during iterative exploration. For
example, participants could opt for multiple smaller generations
(e.g., generating one frame at a time) rather than a single large batch,
leading to a more fluid and interactive experience.

Metric. We used the average user preference rate as the metric.
For each input, we calculate the percentage of participants who pre-
ferred a specific method. This process was repeated over five rounds,
and the results were averaged to calculate the mean preference rate,
with standard deviation used to indicate measurement error.

Results. As shown in Table 2, our method using the CogVideo
backbone achieved the highest perceived quality scores, though
its slower processing speed was noted. In terms of responsiveness,
users preferred our variant with the LTXVideo backbone, which
achieved faster inference times. Moreover, all configurations that
utilized the additional imagemodel (“+ imagemodel”) for scheduling
(Section 3.3) outperformed others in both quality and responsiveness.
These results highlight the advantages of our framework, which
combines strong base models with effective training strategies, over
prior methods.

4.5 Ablative Study
Partitioned VAE. As shown in Fig. 9, we evaluate the impact of

adopting the Partitioned VAE design. Without this design, encod-
ing non-contiguous frames introduces artifacts during the recon-
struction process, such as blurring or ghosting caused by temporal
compression in the latent space. By using the Partitioned VAE, non-
contiguous sections are encoded independently, resulting in clean
reconstructions and improved visual quality, especially when han-
dling complex queries involving non-contiguous frame sequences.

LTXVideo (default):

Input 10%25%50% 5%

SDXL (separated images):

CogVideoX 1.5:

Fig. 10. Visualization of ablative backends. Different backends yield
different visual results. The image model SDXL is trained to predict separate
frames while other video models estimate frames jointly.

Table 3. Runtime comparison of different model backends. The re-
ported times represent baseline performance on a Nvidia L40S GPU without
advanced optimization techniques. Further speedups are possible using
acceleration methods such as TeaCache. All measurements are in seconds.

Model 1 frame 65 frames 129 frames

CogVideoX 1.5 [Yang et al. 2024] 7.2s 193.1s 327.4s
LTXVideo [HaCohen et al. 2024] 4.8s 8.4s 41.3s
SDXL (image model) 3.9s 251.2s 495.1s

Table 4. Abrupt transitions in drawing processes.We analyze the fre-
quency of different types of abrupt transitions per artwork in both human
drawing recordings and our generated outputs. These transitions reflect
common artistic behaviors that may appear as inconsistencies in the draw-
ing process. Numbers represent average count per artwork in 50 samples.
The numbers are counted by humans. Note that the operations are counted
from the record videos and does not involve any meta data of the underlying
operations (which does not exist for AI-generated records).

Abrupt Transition Types Human Proposed

Element visibility change 3.2±0.4 2.8±0.5
Element resizing and warping 3.7±0.3 2.1±0.4
Element import or delete 2.4±0.5 2.2±0.3
Color curves adjustment 1.5±0.2 1.8±0.3
Layer order change 2.3±0.4 2.5±0.4
Total 13.1±0.7 11.4±0.8

Different backendmodels. As shown in Fig. 10 and Table 3, we com-
pare different model backends for our framework. While SDXL (im-
age model) is efficient for single-frame generation (3.9s), LTXVideo
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Input Sketches (different random seeds)

Fig. 11. Additional application: sketch generation. By setting the step
to a low value (e.g., 𝑠 = 50 in this figure) and changing random seeds, the
framework can generate sketches with different artistic decisions.

demonstrates superior efficiency for multi-frame scenarios (0.13s per
frame for 65 frames). CogVideoX 1.5 produces similar visual quality
but at significantly higher computational cost. Video models capture
essential temporal patterns in drawing processes. LTXVideo strikes
a balance between processing time and quality, making it more
suitable for interactive applications. Additionally, incorporating
the SDXL image model for specific query types (e.g., single-frame
queries) enhances frontend responsiveness and user experience.
This demonstrates that a hybrid approach leveraging both video
and image models can optimize performance for different query
scenarios.

4.6 Additional Discussions
Sketch generator. As shown in Fig. 11, our method generate di-

verse sketches by setting the target step to a lower value (e.g., 𝑠 = 50)
and varying the random seed. Unlike traditional edge-detection
methods, these sketches capture artistic decisions and structural
abstractions learned from the dataset, reflecting a natural drawing
process. These generated sketches can serve as valuable resources
for training other models, such as sketch-to-image generators, or
for inspiring artists during the initial stages of the creative process.

Generalization to additional art styles. As shown in Fig. 12, we
explore how our framework handles classical artworks from Van
Gogh and Monet that differ from the digital paintings in our train-
ing dataset. The underlying transformer backbone of the model
facilitates the transfer and generalization to these different artistic
styles. When reconstructing drawing processes for these works, we
observe that the model follows a pattern of initially composing color

Fig. 12. Results of non-digital paintings. We present artworks from Van
Gogh and Claude Monet. ©public domain.

Input 20%50%80% 5%

Fig. 13. Limitation.When processing images with styles too different to
pretrained paintings, the process may have style offsets. When processing
out-of-scope images like UI designs, errors will occur with text and structure.

blocks and later adding finer brush strokes, similar to how a digital
artist might approach recreating such non-digital paintings.

Abrupt transitions and human behaviors. Table 4 quantifies the
frequency of different types of abrupt transitions in both human and
AI-generated drawing processes. These transitions reflect common
artistic behaviors that might appear as inconsistencies but are actu-
ally essential to the real drawing processes. Human artists frequently
toggle layer visibility, resize and warp elements, import or delete
content, adjust color curves, and change layer ordering. Our model
captures these behaviors with similar frequencies, demonstrating
its ability to learn the procedural aspects of artistic creation.

4.7 Limitation
As shown in Fig. 13, our method encounters limitations when pro-
cessing input images that significantly differ in style from the train-
ing data. For instance, inputs such as real photographs or UI design
layouts can result in style inconsistencies or artifacts, including
errors in text rendering or structural details. While this issue may
be alleviated by expanding the dataset to include a broader range of
styles, certain tasks, such as reconstructing drawing processes for
real-world photographs, remain inherently ill-conditioned problems.
In these cases, an optimal mapping distribution may not exist.
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5 CONCLUSION
We introduce a framework for generating past and future states
of digital painting processes, enabling artists to explore, refine,
and visualize creative process videos or individual images. The
framework is based on latest video diffusion models with strong
transformer backbones. We propose partitioned 3D VAEs for han-
dling non-contiguous frame sequences, and robust data processing
pipelines to address the complexities of the set-to-set mappings
across diverse input queries. Extensive experiments and user stud-
ies demonstrate that our framework produces high-quality, coherent
drawing processes while offering interactive responsiveness. The
resulting model can reconstruct drawing sequences that closely en-
semble human process and generating alternative artistic directions.
We discuss various ways to make use of this system and demonstrate
creative manipulations with applications such as sketch generation,
re-imagining early stages, or visualizingmultiple potential outcomes
from a single input.
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